Ad-1

if( aicp_can_see_ads() ) {

COMPLEX NUMBERS (Part-5) | S.N. Dey Math Solution series

Complex Numbers, S.N.DEY  math solution

In the previous article, we have discussed Short Answer Type Questions (from 11 to 15(xii)) and their respective solutions. In this article , we will discuss some more mathematical problems of S.N. Dey Math book Exercise from Complex Numbers along with their solutions. So, let's start. 


16. If $\,\,x\sqrt2=1+\sqrt{-1},\,\,$ find the value of $\,\,x^6+x^4+x^2+2.$

Sol. $\,\,x\sqrt2=1+\sqrt{-1} \\ \Rightarrow x=\frac{1+i}{\sqrt2},\,\,[\text{Since,}\,\,i=\sqrt{-1}]\\ \Rightarrow x^2=\frac{1+i^2+2i}{2}\\~~~~~~~~~=\frac 12(1-1+2i)\\~~~~~~~~~=\frac 12 \times 2i=i\\ \Rightarrow x^2=i \rightarrow(1)$

Hence, $\,\,x^6+x^4+x^2+2\\=(x^2)^3+(x^2)^2+x^2+2\\=i^3+i^2+i+2\,\,\,[\text{By (1)}]\\=i^2.i-1+i+2\\=-i-1+i+2\\=1$

17(i) Show that one value of $\,\,\sqrt{i}+\sqrt{-i}\,\,$ is $\,\sqrt{2}.$

Sol. We know, $\,\, \sqrt{i}=\pm \frac{1}{\sqrt2}(1+i)\rightarrow(1)\,\,[\text{Follow}\,15(iii)].$

Similarly, $\,\, \sqrt{-i}=\pm \frac{1}{\sqrt2}(1-i) \rightarrow(2)$

Hence from (1) and (2), we get $\,\,\sqrt{i}+\sqrt{-i}\\=\pm \frac{1}{\sqrt2}(1+i)\pm \frac{1}{\sqrt2}(1-i)\\=\pm \sqrt{2}.$

So, one value of $\,\,\sqrt{i}+\sqrt{-i}\,\,$ is $\,\sqrt{2}.$ 

17(ii) Show that one value of $\,\,\sqrt{1+i}-\sqrt{1-i}\,\,$ is $\,\,\,\,i\sqrt{2(\sqrt2-1)}.$

Sol.  We know, $\,\, \sqrt{1-i}=\pm \frac{1}{\sqrt2}\left(\sqrt{\sqrt2+1}-i\sqrt{\sqrt2-1}\right) \\ \rightarrow(1)\,\,[\text{Follow}\,15(iv)].$

Similarly, $\,\, \sqrt{1+i}=\pm \frac{1}{\sqrt2}\left(\sqrt{\sqrt2+1}+i\sqrt{\sqrt2-1}\right) \\ \rightarrow(2)$

Hence from (1) and (2), we get $\,\,\sqrt{1+i}+\sqrt{1-i}\\=\pm \frac{1}{\sqrt2}\left(\sqrt{\sqrt2+1}+i\sqrt{\sqrt2-1}\right)\\ -\left[\pm \frac{1}{\sqrt2}\left(\sqrt{\sqrt2+1}-i\sqrt{\sqrt2-1}\right)\right]\\=\pm i\sqrt2 \sqrt{\sqrt2-1}\\=\pm i\sqrt{2(\sqrt2-1)}$

So, one value of $\,\,\sqrt{1+i}+\sqrt{1-i}\,\,$ is $\,i\sqrt{2(\sqrt2-1)}.$ 

17(iii) Show that one value of $\,\,(4+3i)^{-1/2}+(4-3i)^{-1/2}\,\,$is $\,\,\frac{3\sqrt2}{5}.$

Sol.  $\,\,4+3i\\=\frac 12(8+6i)\\=\frac 12(9-1+2.3.i)\\=\frac 12 \left[3^2+i^2+2.3.i\right]\\=\frac 12(3+i)^2. \\ \therefore (4+3i)^{-1/2}=\pm \frac{\sqrt2}{3+i}\\=\pm \frac{\sqrt2(3-i)}{(3+i)(3-i)}\\=\pm \frac{\sqrt2(3-i)}{10}$

Similarly, $\,\,(4-3i)^{-1/2}=\pm \frac{\sqrt2(3+i)}{10}$

Hence, $\,\,(4+3i)^{-1/2}+(4-3i)^{-1/2} \\=\pm \left[\frac{\sqrt2(3-i)}{10}+\frac{\sqrt2(3+i)}{10}\right]\\=\pm \frac{3\sqrt2}{5}.$

So, one value of $\,\,(4+3i)^{-1/2}+(4-3i)^{-1/2}\,\,$is $\,\,\frac{3\sqrt2}{5}.$

18. If $\,\omega\,$ be an imaginary cube root of unity, show that $\,\,(i)\,(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^5)=9$ 

Sol. Since $\,\omega\,$ be an imaginary cube root of unity, $\,\omega^3=1,\,\,1+\omega+\omega^2=0.$

Now, $\,\,(i)\,(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^5)\\=(1-\omega)(1-\omega^2)(1-\omega^3 .\omega)(1-\omega^3. \omega^2)\\=(1-\omega)(1-\omega^2)(1-\omega)(1-\omega^2)\\=\left[(1-\omega)(1-\omega^2)\right]^2\\=\left(1-\omega^2-\omega+\omega^3\right)^2\\=\left[1-(\omega^2+\omega)+1\right]^2\\=\left[1+1+1\right]^2\\=3^2\\=9$ 

18. If $\,\omega\,$ be an imaginary cube root of unity, show that $\,\,(ii)\,(1+\omega-\omega^2)(1-\omega+\omega^2)=4$

Sol. Since $\,\omega\,$ be an imaginary cube root of unity, $\,\omega^3=1,\,\,1+\omega+\omega^2=0.$ 

Now,$\,\,(1+\omega-\omega^2)(1-\omega+\omega^2)\\=(1+\omega+\omega^2-2\omega^2)(1+\omega+\omega^2-2\omega)\\=(0-2\omega^2)(0-2\omega)\\=4\omega^3\\=4\times 1\\=4$

18. If $\,\omega\,$ be an imaginary cube root of unity, show that $\,\,(iii)\,(3+3\omega+5\omega^2)^6\\=(3+5\omega+3\omega^2)^5=64$

Sol. Since $\,\omega\,$ be an imaginary cube root of unity, $\,\omega^3=1,\,\,1+\omega+\omega^2=0.$ 

Now, $(3+3\omega+5\omega^2)^6\\=\left[3(1+\omega+\omega^2)+2\omega^2\right]^6\\=(2\omega^2)^6\\=2^6. (\omega^2)^6\\=64 \times  (\omega^3)^4\\=64 \times 1\\=64 \rightarrow (1)$

Similarly,  $(3+5\omega+3\omega^2)^6\\=\left[3(1+\omega+\omega^2)+2\omega\right]^6\\=(2\omega)^6\\=2^6. (\omega)^6\\=64 \times  (\omega^3)^2\\=64 \times 1\\=64 \rightarrow (2)$

Hence, by (1) and (2), the result follows.

18. If $\,\omega\,$ be an imaginary cube root of unity, show that $\,\,(iv)\, \frac{x\omega^2+y\omega+z}{x\omega+y+z\omega^2}=\omega.$

Sol. Since $\,\omega\,$ be an imaginary cube root of unity, $\,\omega^3=1,\,\,1+\omega+\omega^2=0.$ 

Now, $\,\,\, \frac{x\omega^2+y\omega+z}{x\omega+y+z\omega^2}\\=\frac{x\omega^2+y\omega+z \omega^3}{x\omega+y+z\omega^2}\,\,\,\,[\text{Since,}\,\,\omega^3=1]\\=\frac{\omega(x\omega+y+z\omega^2)}{(x\omega+y+z\omega^2)}\\=\omega$

18. If $\,\omega\,$ be an imaginary cube root of unity, show that  $\,\,(x+y)^2+(x \omega+y \omega^2)^2+(x\omega^2+y\omega)^2\\=6xy.$

Sol. Since $\,\omega\,$ be an imaginary cube root of unity, $\,\omega^3=1,\,\,1+\omega+\omega^2=0 \rightarrow(1)$ 

Now, $\,\,(x+y)^2+(x \omega+y \omega^2)^2+(x\omega^2+y\omega)^2\\=x^2+2xy+y^2+x^2\omega^2+2xy \omega^3 \\+y^2\omega^4+x^2\omega^4+2xy\omega^3+y^2\omega^2\\=x^2(1+\omega^2+\omega^3.\omega)+6xy\\+y^2(1+\omega^3.\omega+\omega^2)\\=x^2(1+\omega+\omega^2)+6xy\\+y^2(1+\omega+\omega^2) \,\, [\omega^3=1]\\=6xy\,\,\,[\text{By (1)}]$

18. If $\,\omega\,$ be an imaginary cube root of unity, show that  $ (vi)\,\,(x+y\omega+z\omega^2)^2+(x \omega+y \omega^2+z)^2\\+(x\omega^2+y+z\omega)^2=0.$

Sol. Since $\,\omega\,$ be an imaginary cube root of unity, $\,\omega^3=1,\,\,1+\omega+\omega^2=0 \rightarrow(1)$ 

Now, $\,\,(x+y\omega+z\omega^2)^2+(x \omega+y \omega^2+z)^2\\+(x\omega^2+y+z\omega)^2\\=(x+y\omega+z\omega^2)^2+(x \omega+y \omega^2+z\omega^3)^2\\+(x\omega^2+y\omega^3+z\omega.\omega^3)^2\\=(x+y\omega+z\omega^2)^2+(x+y\omega+z\omega^2)^2 \omega^2 \\+(x+y\omega+z\omega^2)^2 (\omega^2)^2\\=(x+y\omega+z\omega^2)^2(1+\omega^2+\omega.\omega^3)\\=(x+y\omega+z\omega^2)^2(1+\omega^2+\omega)\\=(x+y\omega+z\omega^2)^2 \times 0 \,\,\,[\text{By (1)}]\\=0.$

19. If $\,\,\alpha=\frac{-1-\sqrt{-3}}{2},\,\, \beta=\frac{-1+\sqrt{-3}}{2},\,\,$ show that $\,\alpha^2+\alpha \beta+\beta^2=0.$

Sol. We have, $\,\,\alpha=\frac{-1-\sqrt{-3}}{2},\,\, \beta=\frac{-1+\sqrt{-3}}{2} \\ \therefore \alpha+\beta=\frac{-1-\sqrt{-3}}{2}+\frac{-1+\sqrt{-3}}{2}=-1 \\ \text{and}\,\,\, \alpha . \beta= \frac{-1-\sqrt{-3}}{2} \times \frac{-1+\sqrt{-3}}{2}=\frac{1-(-3)}{4}=1$

Now, $\,\alpha^2+\alpha \beta+\beta^2\\=(\alpha+\beta)^2-\alpha \beta\\=(-1)^2-1\\=0.$

20. Show that $\,\,\left(\frac{-1+\sqrt{-3}}{2}\right)^{19}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{19}=-1.$

Sol. Let $\,\,\frac{-1+\sqrt{-3}}{2}=\omega,\\ \frac{-1-\sqrt{-3}}{2}=\omega^2. \\ \therefore \left(\frac{-1+\sqrt{-3}}{2}\right)^{19}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{19}\\=(\omega)^{19}+(\omega^2)^{19}\\=(\omega^3)^6. \omega+(\omega^3)^{12}.\omega^2\\=1.\omega+1.\omega^2\,\,[\text{Using,}\,\,\omega^3=1]\\=-1\,\,[\text{Using,}\,\,\,1+\omega+\omega^2=0]$

21.  If $\,\,\alpha,\,\beta\,\,$ are the complex cube roots of $\,1,\,$ show that $\,\,\alpha^4+\beta^4+\alpha^{-1}.\beta^{-1}=0.$

Sol. Since $\,\,\alpha,\,\beta\,\,$ are the complex cube roots of $\,1,\,$ let $\,\alpha=\omega,\,\beta=\omega^2. \\ \therefore 1+\omega+\omega^2=0 \\ \Rightarrow 1+\alpha +\beta=0 \\ \Rightarrow \alpha+\beta=-1 \\ \text{and}\,\,\omega. \omega^2=\omega^3=1 \\ \Rightarrow\alpha .\beta=1$

Now, $\,\,\alpha^4+\beta^4+\alpha^{-1}.\beta^{-1}\\=(\alpha^2+\beta^2)^2-2\alpha^2\beta^2+\frac{1}{\alpha \beta}\\=\left[(\alpha+\beta)^2-2\alpha \beta\right]^2-2 \times 1+\frac 11\\=\left[(-1)^2-2 \times 1\right]^2-2+1\\=(1-2)^2-1\\=1-1\\=0$

22. Find the value of $\,\,\sqrt{[-3+\sqrt{\{-3+\sqrt{-3+\cdots \infty}\}}]}$

Sol. Let $\,\,z=\sqrt{[-3+\sqrt{\{-3+\sqrt{-3+\cdots \infty}\}}]} \\ \Rightarrow z^2=-3+\sqrt{[-3+\sqrt{\{-3+\sqrt{-3+\cdots \infty}\}}]} \\ \Rightarrow z^2=-3+z \\ \Rightarrow z^2-z+3=0 \\ \Rightarrow z=\frac{1 \pm \sqrt{(-1)^2-4 \times 1 \times 3}}{2 \times 1}\\~~~~~~~=\frac{1 \pm i \sqrt{11}}{2}$

23(i). If $\,\omega\,$ be a complex cube root of unity and $\,\,x=\alpha+\beta,\,y= \alpha+\beta \omega,\,z=\alpha+\beta \omega^2,\,\,$ show that $\,\,x^3+y^3+z^3=3(\alpha^3+\beta^3).$

Sol.  We notice $\,x^3+y^3+z^3\\=(\alpha+\beta)^3+(\alpha+\beta \omega)^3+(\alpha+\beta \omega^2)^3\\=[\alpha^3+\beta^3+3 \alpha \beta(\alpha+\beta)]\\+[\alpha^3+(\beta \omega)^3+3 \alpha(\beta \omega)(\alpha+\beta\omega)]\\+[\alpha^3+(\beta \omega^2)^3+3 \alpha(\beta \omega^2)(\alpha+\beta\omega^2)]\\=3 \alpha^3+ (\beta^3+\beta^3\omega^3+\beta^3\omega^6)\\+3 \alpha \beta[\alpha+\beta+\omega(\alpha+\beta\omega)\\+\omega^2(\alpha+\beta\omega^2)]\\=3 \alpha^3+3 \beta^3+3\alpha\beta[\alpha(1+\omega+\omega^2)\\+\beta(1+\omega^2+\omega^4)]\\=3 \alpha^3+3 \beta^3+3\alpha\beta[\alpha(1+\omega+\omega^2)\\+\beta(1+\omega^2+\omega^3.\omega)]\\=3 \alpha^3+3 \beta^3+3\alpha\beta[\alpha(1+\omega+\omega^2)\\+\beta(1+\omega^2+\omega)]\\=3(\alpha^3+\beta^3)\,\,[\text{Using,}\,1+\omega+\omega^2=0]$

23(ii) If $\,\,x=a+b,\,y=a \alpha+b\beta,\,z=a \beta+b \alpha,\,$ where $\,\,\alpha,\,\beta\,$ are complex cube root of unity , show that $\,\,xyz=a^3+b^3$

Sol. Since $\,\, \alpha, \beta\,$ are complex cube root of unity , without the loss of generality , we can assume that $\,\,\alpha=\omega,\,\beta=\omega^2.$

Now, $yz=(a \alpha+b\beta)(a \beta+b \alpha)\\~~~~=a^2(\alpha\beta)+b^2(\alpha\beta)+ab(\alpha^2+\beta^2) \rightarrow(1)$

We now compute $\,\alpha \beta,\,\,\alpha^2+\beta^2. \\ \therefore \alpha\beta=\omega.\omega^2=\omega^3=1,\rightarrow(2)\\ \alpha^2+\beta^2=(\omega)^2+(\omega^2)^2\\~~~~~~~~~~~~~=\omega^2+\omega^4\\~~~~~~~~~~~~~=\omega^2+\omega^3.\omega\\~~~~~~~~~~~~~=\omega^2+\omega=-1\rightarrow(3)$

Hence, from (1),(2) and (3), we get, $\,\,yz=a^2+b^2-ab \\ \therefore xyz=(a+b)(a^2-ab+b^2)\\~~~~~~~~~~=a^3+b^3$

24. If $\,\,z=x+iy,\,\,\text{and}\,\,|z-1|^2+|z+1|^2=4,\,\,$determine the position of the point $\,z\,$ in the complex plane.

Sol. $|z-1|^2+|z+1|^2=4 \\ \Rightarrow |x+iy-1|^2+|x+iy+1|^2=4 \\ \Rightarrow |(x-1)+iy|^2+|(x+1)+iy|^2 =4 \\ \Rightarrow [\sqrt{(x-1)^2+y^2}]^2+[\sqrt{(x+1)^2+y^2}]^2=4 \\ \Rightarrow (x-1)^2+y^2+(x+1)^2+y^2=4 \\ \Rightarrow [(x+1)^2+(x-1)^2]+2y^2=4 \\ \Rightarrow 2(x^2+1)+2y^2=4 \\ \Rightarrow x^2+1+y^2=2 \\ \Rightarrow x^2+y^2=1 \cdots(1)$

From (1), we can conclude that it represents a circle with center $\,(0,0)\,$ and radius $=1\,$unit. 

25. Factorize : $\,(i)\,a^2-ab+b^2\,\,\,(ii)\,\,x^3+y^3$

Sol. (i) $\,a^2-ab+b^2\\=a^2+(\omega+\omega^2)ab+\omega^3b^2,\\ [\omega \,\text{being cube root of unity},\,1+\omega+\omega^2=0,\,\omega^3=1]\\=(a+\omega b)(a+\omega^2 b) \cdots(1)$

(ii) $\,x^3+y^3\\=(x+y)(x^2-xy+y^2)\\=(x+y)(x+\omega y)(x+\omega^2 y)\,\,[\text{Using (1)}]$

 

If you want to purchase full Complex Numbers Solution (S.N. Dey) PDF , then click here

Next, if you are interested to read next article on Very Short Answer Type Questions of S.N. Dey  Math Exercise book, then click here.  

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.