41. Show that if $\,x\,$ is real and $\,x^2+5 <6x,\,$ then $\,x\,$ must lie between $\,1\,$ and $\,5.$
Sol. $\,x^2+5 <6x \\ \Rightarrow x^2-5x+5 <0 \\ \Rightarrow (x-5)(x-1) <0 \\ \therefore 1<x<5.$
Hence, if $\,x\,$ is real and $\,x^2+5 <6x,\,$ then $\,x\,$ must lie between $\,1\,$ and $\,5.$
42. If $\,x\,$ is real, find the real values of $\,p\,$ which make $\,\,4x^2+px+1\,\,$ always positive.
Sol. $\,\,4x^2+px+1 \\=(2x)^2+2.2x.\frac p4+\left(\frac p4\right)^2+\left(1-\frac{p^2}{16}\right)\\=\left(2x+\frac p4\right)^2+\left(1-\frac{p^2}{16}\right)$
Since $\,\,x \in \mathbb R,\,\, 4x^2+px+1\,\,$ is always positive, so $\,\,1-\frac{p^2}{16} \geq 0 \\ \Rightarrow 16-p^2 \geq 0 \\ \Rightarrow p^2-16 \leq 0 \\ \Rightarrow (p+4)(p-4) \leq 0 \\ \therefore -4\leq p \leq 4.$
43. If $\,x\,$ is real, find the real values of $\,m\,$ which make the expression $\,\,mx-x^2-1\,\,$ always positive.
Sol. $\,\,mx-x^2-1 \\=-(x^2-mx+1)\\=-[x^2-2.x.\frac m2+(\frac m2)^2+(1-\frac{m^2}{4})]$
Since $\,\,x ,\,m\,\,$ are real and $\,\,\left(x-\frac m2\right)^2 \geq 0.$
So, if $mx-x^2-1 <0,\,\\ 1-\frac{m^2}{4} \geq 0 \\ \Rightarrow \frac{m^2}{4}-1 \leq 0 \\ \Rightarrow m^2-4 \leq 0 \\ \Rightarrow (m+2)(m-2) \leq 0 \\ \Rightarrow -2 \leq m \leq 2.$
44. If $\,\,\frac{(x-5)(x^2-2x+1)}{(x-7)(x^2+2x+3)}\,\,$ is positive for all real values of $\,x\,$, show that $\,x\,$ has no real value between $\,5\,$ and $\,7.$
Sol. Let $\,\,y=\frac{(x-5)(x^2-2x+1)}{(x-7)(x^2+2x+3)} \\ \Rightarrow y=\frac{(x-5)(x-1)^2}{(x-7)[(x+1)^2+2]} \cdots (1)$
From (1), we notice if $\,\,x=7,\,y\,\,$ is undefined. $\,\therefore y \neq 7.$
Now, Since $\,\, y \geq 0,\,\frac{(x-5)(x-1)^2}{(x-7)[(x+1)^2+2]} \geq 0. $
Since $\,\,x \in \mathbb R \,\text{and}\,\,(x-1)^2\geq 0 \\ \text{and}\,\,(x+1)^2+2 >0.$
Hence for non-negative values of $\,\,y,\, \,(x-5)(x-7) \geq 0.$
Now, since $\,\,(x-5)(x-7)\geq 0 \\ \Rightarrow \text{either}\,\,x-5 \geq 0,\,x-7 \geq 0 \cdots(2) \\ \text{or,}\,\,x-5 \leq 0 ,\,\,x-7 \leq 0 \cdots(3)$
Hence, from (2) we get, $\,\,7 \leq x < \infty \\ \text{which means}\,\,\, x \in [7,\infty) \\ \therefore x \in (7,\infty)\,\,[\text{Since,}\,\, y \neq 7]$
or from (3), we get $\, -\infty <x \leq 5 \\ \therefore x \in (-\infty,5].$
Hence, $\,x\,$ has no real value between $\,5\,$ and $\,7.$
45. If the equation $\,\,y^2+x^2-10x+21=0\,\,$ is satisfied by real values of $\,\,x\,$ and $\,y\,$, prove that $\,x\,$ lies between $\,3\,$ and $\,7\,$ and $\,y\,$ lies between $\,\,(-2)\,$ and $\,2.$
Sol. $\,\,y^2+x^2-10x+21=0 \cdots(1).$
For all real values of $\,x\,$, the discriminant of $\,(1)\, \,\,\geq 0 \\ (-10)^2-4.1.(y^2+21)\geq 0 \\ \Rightarrow 4[25-y^2-21] \geq 0 \\ \Rightarrow y^2-4 \leq 0 \\ \Rightarrow (y-2)(y+2) \leq 0 \\ \Rightarrow -2 \leq y \leq2.$
Again, for real values of $\,y\,$, the discriminant of $\,(1)\,\, \geq 0 \\ \Rightarrow 0^2-4 \times 1 \times (x^2-10x+21) \geq 0 \\ \Rightarrow x^2-10x+21 \leq 0 \\ \Rightarrow (x-7)(x-3) \leq 0 \\ \Rightarrow 3 \leq x \leq 7.$
Hence, if the equation $\,\,y^2+x^2-10x+21=0\,\,$ is satisfied by real values of $\,\,x\,$ and $\,y\, ,\,\,\,\,x\,$ lies between $\,3\,$ and $\,7\,$ and $\,y\,$ lies between $\,\,(-2)\,$ and $\,2.$
46. If $\,x\,$ is real, show that $\,\,(x-2)(x-3)(x-4)(x-5)+2\,\,$ is always positive.
Sol. $\,\,(x-2)(x-3)(x-4)(x-5)+2\\ =[(x-2)(x-5)][(x-3)(x-4)]+2\\=(x^2-7x+10)(x^2-7x+12)+2\\=(x^2-7x)^2+22(x^2-7x)+120+2\\=(x^2-7x)^2+2 \times (x^2-7x) \times 11+11^2+1\\=(x^2-7x+11)^2+1>0\,\,[\,\, x \in \mathbb R]$
Now, to get the solution of Long Answer Type Questions [Q. 1-7] , click here .
To get full PDF of S.N. Dey Math Solutions on Quadratic Equations, click here .
Please do not enter any spam link in the comment box