In the previous article , we have discussed Long Answer Type Questions (Qst. 1-6) of Relation and Mapping Chapter of S.N. Dey Math Exercise. In this article, we are going to complete the rest of Long Answer Type Questions (Quest. 7-12) of Relation and Mapping as a part of our S.N. Dey Math solution series. So, let's start.
7. Find the domain of definition of $\,\,(i) f(x)=\sqrt{x+1}+\sqrt{4-x}$
Sol.$\,f(x)\,$ will be defined if $\,x+1 \geq 0 \, \text{and}\,\, 4-x \geq 0 \\ \therefore -1 \leq x \leq 4.$
So, domain of definition of $f(x)=\{x \in \mathbb R: -1 \leq x \leq4\}$
7. Find the domain of definition of $\,\,(ii)\,\, \phi(x)=\cos^{-1} \left(\frac{x-4}{3}\right)+\log(5-x)$
Sol.$\,\,\,\,\phi(x)\,$ will be defined if $\,5-x > 0 \, \text{and}\,\, -1 \leq \frac{x-4}{3} \leq 1 \\ \Rightarrow x <5 \,\, \wedge \,\, 1 \leq x \leq 7 \\ \therefore 1 \leq x <5$
So, domain of definition of $\phi(x)=\{x \in \mathbb R: 1 \leq x <5\}$
8. The function $\,\,f(x)\,$ is defined in $\,\,0 \leq x \leq 1;\,\,$
Find the domain of definition of $\,(i)\,f(2x-1)\, (ii)\,f(x^2)$
Sol. of 8(i) The function $\,f(x)\,$ is defined in
$\,\,0 \leq x \leq 1 ;$ and so $\,f(2x-1)\,$ is defined in
$\,\,0 \leq 2x-1 \leq 1 \Rightarrow \frac 12 \leq x \leq 1$
So, the domain of definition of $\,f(x)\,$ is : $\{ x \in \mathbb R:\frac 12 \leq x \leq 1 \}$
sol. of 8(ii) The function $\,f(x^2)\,$ will be defined if $\,0 \leq x^2 \leq 1 \Rightarrow -1 \leq x \leq 1$
So, the domain of definition of $\,f(x)\,=\{x \in \mathbb R:-1 \leq x \leq 1 \}$
9. If two real functions $\,\,f(x)\,$ and $\,\,\phi(x)\,\,$ are defined respectively, by $\,\,f(x)=\sqrt{x-2}\,\,$ and $\,\,\phi(x)=x+3,\,$
then find each of the following functions: $(i)\,\frac 1f \,\,(ii)\frac{1}{\phi}\,\,(iii)\, f +\phi\,\,(iv) \, f \phi \,\,(v)\, \frac{f}{\phi}$
Sol. (i) $\frac 1f(x)=\frac{1}{f(x)}=\frac{1}{\sqrt{x-2}}\,\,$ and it will be defined if $\,x-2>0.$
Therefore, $\,\frac 1f(x)=\frac{1}{\sqrt{x-2}},\,\, 2 <x<\infty$
(ii) $\,\,\frac{1}{\phi}(x)=\frac {1}{\phi(x)}=\frac{1}{x+3}\,\,$ and it will be defined if $\,\,x+3 \neq 0,\,\,$
Now, $\,\,\frac{1}{\phi}(x)=\frac{1}{x+3},\,\, x \in \mathbb R-\{-3\}$
(iii)$\,\,(f +\phi)(x)=f(x)+\phi(x)=\sqrt{x-2}+x+3\,\,$ and it will be defined if $\,x-2 \geq 0.$
Now, $(f+\phi)(x)=\sqrt{x-2}+x+3,\,\,2 \leq x < \infty$
(iv) $\,\, (f \phi)(x)=f(x)\phi(x)=(\sqrt{x-2})(x+3)$ and it will be defined if $\,\,$ if
$x-2 \geq 0. \\ \therefore (f\phi)(x)=(\sqrt{x-2})(x+3),\,\,\, 2 \leq x < \infty$
(v) $\,\,\, \frac {f}{\phi}(x)=\frac{f(x)}{\phi(x)}=\frac{\sqrt{x-2}}{x+3}\quad$
will be defined if $\,\, x-2 \geq 0.$
So, $\,\,\frac{f}{\phi}(x)=\frac{\sqrt{x-2}}{x+3},\,\,2 \leq x < \infty.$
10. Find the domain of definition of the function defined by $\,f(x)=\frac{1}{\log_e(2-x)}+\sqrt{x+3}.$
Sol. The aforementioned function will be defined if
$\,\,2-x \neq 1,\,2-x >0 \,\wedge \, x+3 \geq 0. \\ \Rightarrow -3 \leq x <1,\,\, 1 <x<2.$
So, the required the domain of definition is: $\{x \in \mathbb R : -3 \leq x <1,\,1 <x<2.\}$
11. Find the domain of definition of each of the following functions :
$\,\,(i)\,\,f(x)=\frac{1}{\sqrt{x+|x|}}\\(ii)\,\,g(x)=\frac{1}{\sqrt{x-|x|}}\\ (iii)\,\,h(x)=\sqrt{x+[x]} \\ (iv)\,\,\phi(x)=\sqrt{x-[x]}$
Sol. (i) $\,\,f(x)\,$ will be defined if $\,\,x+|x| >0.$
Now, $\,\, \forall x, |x|>0\,\,$and so the function will be defined if $\,\,x >0.$
So, the required domain of def. is : $\,\, x \in \mathbb R : 0 <x< \infty$
Sol. (ii) $\,\,g(x)\,$ will be defined if $\,\,x-|x| >0.$
Now, we know, $\,\, \forall x \in \mathbb R, |x| \not <x\,\,$and so $\,\,x-|x| >0,\,$ is impossible.
So, the required domain of def. is : $\,\, \phi,\,\,\,\text{Null Set.}$
Sol. (iii) $\,\,h(x)\,$ will be defined if $\,\,x+[x] \geq 0.$
Now, we know, $\,\, \forall x \in \mathbb R, x +[x] \geq 0\,\,$ if $\,\,x \geq 0.$
So, the required domain of def. is : $\,\, \{x : \in \mathbb R: x \geq 0\}$
Sol. (iv) $\,\, \phi(x)\,$ will be defined if $\,\,x-[x] \geq 0.$
Now, we know, $\,\, \forall x \in \mathbb R, [x] \leq x\,\,$ if $\,\,x \geq 0.$
So, the required domain of def. is : $\,\, \mathbb R$
12. Find the range of each of the following functions :
$\,\,(i) \,f(x)=2-|x-2| \\ (ii)\,f(x)=\frac{1}{\sqrt{x+[x]}}\,\,(iii)\,h(x)=\frac{|x-3|}{x-3}$
Sol. (i) We know, $\,\, 0 \leq |x-2| < \infty \\ \Rightarrow -\infty < -|x-2| \leq 0 \\ \Rightarrow -\infty <2-|x-2| \leq 2$
So, the range of the function is : $\,\, (-\infty,2].$
Sol. (ii) The function will be defined if $\,\,x+[x] >0,\,$ which is possible when $\,x>0.$
Now, $\,x>0 \Rightarrow 0 < x+[x] < \infty, \\ ~~~~~~~~~~\Rightarrow 0 < \frac{1}{x+[x]} < \infty$
So, the range of the function is : $\,\,(0,\infty)$
Sol .(iii) Let
$\qquad f(x)=|x-3|~=~\begin{cases} x-3 &:& x\geq 3\\[3ex] 3-x &:& x < 3 \end{cases} \\ \therefore \qquad h(x)=~\begin{cases}1 &:& |x-3|\geq 0\\[3ex] -1 &:& |x-3| < 0 \end{cases}$
So, the range of the function: $\,\{-1,1\}.$
To download full PDF on relation and mapping, click here .
Please do not enter any spam link in the comment box