Ad-1

if( aicp_can_see_ads() ) {

QUADRATIC EQUATIONS (Part-17) | S.N. Dey Math Solution Series

QUADRATIC EQUATIONS (Part-17) | S.N. Dey Math Solution Series


 

3. Solve by factorization: 

$\,(i)\, 3x^2+8ix+3=0 \\ \Rightarrow 3x^2+8ix-3i^2=0 \\ \Rightarrow 3x^2+9ix-ix-3i^2=0 \\ \Rightarrow 3x(x+3i)-i(x+3i)=0 \\ \Rightarrow (x+3i)(3x-i)=0 \\ \therefore x=\frac i3\,\,\text{or}\,\,-3i.$

$\,(ii)\,ix^2+x+6i=0 \\ \Rightarrow i^2x^2+ix+6i^2=0 \\ \Rightarrow -x^2+ix+6i^2=0 \\ \Rightarrow x^2-ix-6i^2=0 \\ \Rightarrow x^2-3ix+2ix-6i^2=0 \\ \Rightarrow x(x-3i)+2i(x-3i)=0 \\ \Rightarrow (x-3i)(x+2i)=0 \\ \Rightarrow x=3i\,\,\text{or}\,\,x=-2i$

$\,(iii)\, x^2+(i-3\sqrt2)x-3\sqrt2i=0 \\ \Rightarrow x^2+ix-3\sqrt2x-3\sqrt2i=0 \\ \Rightarrow x(x+i)-3\sqrt2(x+i)=0 \\ \Rightarrow (x+i)(x-3\sqrt2)=0 \\ \therefore x= -i,\,\, 3\sqrt2.$


$\,(iv)\,2x^2-ix+6=0 \\ \Rightarrow 2x^2-ix-6i^2=0\,\,\,[\text{Using}\,\,i^2=-1]\\ \Rightarrow 2x^2-4xi+3xi-6i^2=0 \\ \Rightarrow 2x(x-2i)+3i(x-2i)=0 \\ \Rightarrow (x-2i)(2x+3i)=0 \\ \Rightarrow x=2i,\,\,-\frac{3i}{2}.$


$\,(v)\, x^2+3\sqrt2xi+8=0 \\ \Rightarrow x^2+3\sqrt2xi-8i^2=0 \\ \Rightarrow x^2+4\sqrt2xi-\sqrt2xi-8i^2=0 \\ \Rightarrow x(x+4\sqrt2i)-\sqrt2i(x+4\sqrt2i)=0\\ \Rightarrow (x+4\sqrt2i)(x-\sqrt2i)=0 \\ \therefore x=-4\sqrt2i,\,\, \sqrt2i.$

$\,(vi)\,12ix^2-x+6i=0 \\ \Rightarrow 12i^2x^2-ix+6i^2=0 \\ \Rightarrow -12x^2-ix+6i^2=0 \\ \Rightarrow 12x^2+ix-6i^2=0 \\ \Rightarrow 12x^2+9ix-8ix-6i^2=0 \\ \Rightarrow 3x(4x+3i)-2i(4x+3i)=0 \\ \Rightarrow (4x+3i)(3x-2i)=0 \\ \therefore \,\,x=-\frac{3i}{4},\,\,\,\frac{2i}{3}$

4. Solving the equation $\,\,x^2+(i-7)x-(i-18)=0,\,\,$ prove that, the roots of the equation are not complex conjugate numbers.

Sol. Comparing the given equation $\,\,x^2+(i-7)x-(i-18)=0 \cdots(1)$ with $\,\,ax^2+bx+c=0\,\,$ we get $\,\,a=1,b=(i-7),c=-(i-18)$ and so the discriminant of the given equation is : 

$\,\, D=b^2-4ac\\=(i-7)^2+4.1.(i-18)\\=i^2-2.i.7+7^2+4i-72\\=-1-14i+49+4i-72\\=-24-10i\\=1^2+(5i)^2-2.1.5i\\=(1-5i)^2 \cdots(2) $

So, the solution of (1) is : $\,\,x=\frac{-(i-7)\pm \sqrt{D}}{2}\\~~~~=\frac{-i+7 \pm(1-5i)}{2}\,\,\,[\text{By (2)}]\\~~~~=\frac{-i+7+1-5i}{2},\,\,\frac{-i+7-1+5i}{2}\\~~~~=(4-3i),\,\,(3+2i) \cdots(3)$

From (3), it is evident that the roots of the equation are not complex conjugate numbers. (proved)

To get full PDF of S.N. Dey  Math Solutions on Quadratic Equations, click here

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.