• About Us
  • Privacy Policy
  • Terms and Conditions
  • Contact
  • PDF
Examprepp
  • Home
  • Recent
  • Subjects
  • _History
  • _S N Dey Maths
  • __Class 11
  • __Class 12
  • __PDF
  • _Geography
  • _Contact us
Type Here to Get Search Results !

Ad-1

Blogger templates

Your Responsive Ads code (Google Ads)
HomeS.N.DeyMathSolutionPROPERTIES OF TRIANGLES (PART-7)

PROPERTIES OF TRIANGLES (PART-7)

0 Admin September 25, 2021

PROPERTIES OF TRIANGLES (PART-7)

 

$\,4.\,\,$ If $\,\,a\cos^2(C/2)+c\cos^2(A/2)=\frac{3b}{2}\,\,\,$ then show that the sides of the triangle are in A.P.

Sol. We have, $\,\,a\cos^2(C/2)+c\cos^2(A/2)=\frac{3b}{2}\\ \Rightarrow a.2\cos^2(C/2)+c.2\cos^2(A/2)=3b \\ \Rightarrow a(1+\cos C)+c(1+\cos A)=3b \\ \Rightarrow a+c+(a\cos C+c\cos A)=3b \\ \Rightarrow a+c+b=3b \\ \Rightarrow a+c=2b$

Hence, the sides of the triangle are in A.P.

$\,5.\,$ In any $\,\triangle ABC,\,$ if $\,\,\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c},\,\,$ show that, $\,\,C=60^{\circ}.$

Sol.$\,\,\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c},\,\,\text{(given)} \\ \Rightarrow \frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=3 \\ \Rightarrow 1+\frac{b}{a+c}+1+\frac{a}{b+c}=3 \\ \Rightarrow \frac{b^2+bc+a^2+ac}{(a+c)(b+c)}=1 \\ \Rightarrow b^2+bc+a^2+ac=ab+ac+bc+c^2 \\ \Rightarrow a^2+b^2-c^2=ab \\ \Rightarrow \frac{a^2+b^2-c^2}{2ab}=\frac 12 \\ \Rightarrow \cos C=\frac 12=\cos 60^{\circ} \\ \Rightarrow C=60^{\circ}\,\,\,\text{(showed)}$

$\,6.\,\,$ If $\,\,2\cos A=\frac{\sin B}{\sin C}\,\,$ then show that the triangle is isosceles.

Sol. We know, for any  $\,\triangle ABC,\,\, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\rightarrow(1)$,where $\,R\,$ being the circumradius $\,\,\triangle ABC$

Now, $\,2\cos A=\frac{\sin B}{\sin C} \\ \Rightarrow 2\sin C\cos A=\sin B \\ \Rightarrow \sin(A+C)+\sin(C-A)=\sin B \\ \Rightarrow \sin(\pi-B)+\sin(C-A)=\sin B  \\ ~~~~~~~~~~~~~~~~~[\,\,\because A+B+C=\pi] \\ \Rightarrow \sin B+\sin(C-A)=\sin B \\ \Rightarrow \sin (C-A)=0 \\ \Rightarrow C-A=0 \\ \Rightarrow 2R \sin C=2R \sin A \\ \Rightarrow c=a$
Hence, the two sides of the triangle are equal and  so the triangle is isosceles.

$\,7(i)\,$ If the cosines of two angles of a triangle are proportional to the opposite sides, show that the triangle is isosceles.

Sol. We know, for any  $\,\triangle ABC,\,\, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\rightarrow(1)$,where $\,R\,$ being the circumradius $\,\,\triangle ABC.$

By question, $\,\frac{\cos A}{a}=\frac{\cos B}{b} \\ \Rightarrow b\cos A=a\cos B \\ \Rightarrow 2R\sin B\cos A=2R\sin A\cos B \\ \Rightarrow 2R[\sin A\cos B-\cos A\sin B]=0 \\ \Rightarrow 2R\sin(A-B)=0 \\ \Rightarrow \sin(A-B)=0 \\ \Rightarrow A-B=0  \\ \Rightarrow 2R\sin A=2R\sin B \\ \Rightarrow a=b$ 

Hence, the two sides of the triangle are equal and  so the triangle is isosceles.

$\,(ii)\,$ In a given triangle the ratio of the cosines of two particular angles is equal to the inverse of the ratio of the corresponding opposite sides. Show that the triangle is either right angled or isosceles.

Sol. Let $\,\,a,b,c\,$ are the sides of $\,\,\triangle ABC\,\,$ which are opposite to the angles $\,A,B,C\,$ respectively.

By question, $\,\,\frac{\cos A}{1/a}=\frac{\cos B}{1/b} \\ \Rightarrow a\cos A=b\cos B \\ \Rightarrow 2R\sin A\cos A=2R\sin B\cos B \\ \Rightarrow \sin2A=\sin2B \\ \Rightarrow \sin 2A-\sin2B=0 \\ \Rightarrow 2\sin(A-B)\cos(A+B)=0  \\ \Rightarrow \sin(A-B)=0\rightarrow(1), \\ \text{or},\,\,\cos(A+B)=0 \rightarrow(2)$

From $\,(1),\,$ we get $\,\,A-B=0  \\ \Rightarrow  A=B  \\ \Rightarrow  2R\sin A=2R\sin B  \\ \Rightarrow a=b$

Again, by $(2),\,\,\,\cos(A+B)=0  \\ \Rightarrow  A+B=\pi/2  \\ \Rightarrow  \pi-C=\pi/2 \,\,[\because A+B+C=\pi] \\ \Rightarrow  C=\pi-\pi/2=\pi/2$

Hence, the triangle is either right angled or isosceles.
$\,8.\,$ In any $\,\,\triangle ABC,\,$ if $\,\,\cos A\cos B+\sin A\sin B\sin C=1\,\,$ then prove that the triangle is an isosceles right angled.

Sol. We know, for any  $\,\triangle ABC,\,\, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\rightarrow(1)$,where $\,R\,$ being the circumradius $\,\,\triangle ABC$

$\,\,\cos A\cos B+\sin A\sin B\sin C=1 \\ \Rightarrow 2\cos A\cos B+2\sin A\sin B\sin C=2 \\ \Rightarrow 2\cos A\cos B+2\sin A\sin B\sin C\\-(\cos^2A+\cos^2B)-(\sin^2A+\sin^2B)=0 \\ \Rightarrow (\cos^2A-2\cos A\cos B+\cos^2B)\\+(\sin^2A-2\sin A\sin B+\sin^2B)\\+2\sin A\sin B-2\sin A\sin B\sin C=0 \\ \Rightarrow (\cos A-\cos B)^2+(\sin A-\sin B)^2\\+2\sin A\sin B(1-\sin C)=0 \rightarrow(1) $

Clearly, $\,\,(\cos A-\cos B) \geq 0,\,\,(\sin A-\sin B)^2\geq 0$

Again, $\,\sin C \leq 1 \Rightarrow 1-\sin C \geq 0 \\ \text{and}\,\,\sin A >0,\,\,\sin B>0\,[\because 0<A,B <\pi]$

So, $\,\,(1)\,\,$ will be satisfied when

 $\,\, (\cos A-\cos B)^2=(\sin A-\sin B)^2=0 \\ \Rightarrow A=B \\ \Rightarrow 2R\sin A=2R \sin B \\ \Rightarrow a=b\rightarrow(2) \\ \text{and}\,\,1-\sin C=0 \\ \Rightarrow \sin C =1 \\ \Rightarrow C=\pi/2\rightarrow(3)$ 

Hence, from $\,(2),\,(3)\,$ we can conclude that the triangle is an isosceles right angled.

$\,9.\,$ In any $\,\triangle ABC,\,\,$ prove that, $\,\,\cos A+\cos B+\cos C  \leq \frac 32$

Sol. $\,\cos A+\cos B+\cos C\\=\cos A+2\cos \left(\frac{B+C}{2}\right)\cos\left(\frac{B-C}{2}\right)\\=\cos A+2\cos\left(\frac{\pi}{2}-\frac A2\right)\cos\left(\frac{B-C}{2}\right)\\ ~~~~~~~~~~~~~~~~~~~~~~[\because A+B+C=\pi]\\=\cos A+2\sin (A/2)\cos\left(\frac{B-C}{2}\right)\\ \leq \cos A+2\sin(A/2)\\ ~~~~~~~~~~~~~~[\because \cos\left(\frac{B-C}{2}\right) \leq 1]\\= 1-2\sin^2(A/2)+2\sin(A/2)\\=\frac 32-2\left[\sin^2(A/2)-2.\sin(A/2).\frac 12+\frac 14\right]\\=\frac 32-2\left(\sin(A/2)-\frac 12\right)^2 \\ \leq \frac 32\quad \left[\because \left(\sin(A/2)-\frac 12\right)^2 \geq 0\right] \\ \therefore \cos A+\cos B+\cos C \leq \frac 32\,\,\text{(proved)}$
Tags
Class XI Properties of Triangle S N Dey S.N.DeyMathSolution
  • Newer

  • Older

Admin

Admin

I am an asstt. teacher (maths) by professsion. I have cracked various exams like ssc cgl, psc(wb) clerckship exam, psc miscellaneous and appeared wbcs main twice. Someone has rightly said, " The best part of Learning is Sharing what you know". That's what I am trying to do and I am still learning . If you find any mistake or if you have better solution or any suggestion then please comment below.

    You may like these posts

    Show more

    Post a Comment

    0 Comments
    * Please Don't Spam Here. All the Comments are Reviewed by Admin.

    Please do not enter any spam link in the comment box

    Top Post Responsive Ads code (Google Ads)
    Below Post Responsive Ads code (Google Ads)
    Your Responsive Ads code (Google Ads)

    Social Plugin

    • facebook
    • youtube

    Popular Posts

    Labels

    • Book Reviews 1
    • Class 11 17
    • Class XI 161
    • Class XII 92
    • Co-ordinate Geometry 24
    • combination 1
    • Complex Numbers 6
    • Compound Angles 8
    • conic sections 15
    • Differential Equation 23
    • Differentiation 38
    • ebooks 3
    • FiveYearsPlanning 1
    • Free PDF 3
    • GeneralScience 1
    • Genral Soln 14
    • GeographyOfIndia 7
    • GP 13
    • HOW TO GET SUCCESS IN WBCS 1
    • HP 4
    • HS MATH QUESTION PAPER 2022 2
    • Hyperbola 1
    • IIT JEE 1
    • IndianHistory 1
    • IndianPolity 3
    • INM 1
    • Lagrange's MVT 3
    • Limit 18
    • Linear Differential Equation 5
    • Mathematical Induction 4
    • Maths Solution 32
    • Multiple Angles 16
    • parabola 1
    • Permutation 7
    • Plane 5
    • Properties of Triangle 10
    • pscclerkship 3
    • Quadratic Equation 20
    • Relation and Mapping 8
    • Rolle's Theorem 5
    • S N Dey 162
    • S N Dey mathematics 17
    • S.N.DeyMathSolution 223
    • Sequence and series 31
    • Set theory 5
    • SN Dey Math Solution Class 11 1
    • ssc_cgl 1
    • straight line 15
    • Submultiple Angles 8
    • SultaniPeriod 1
    • Tangent and Normal 9
    • Transf of sums and products 7
    • Trig Ratios of Acute Angles 10
    • Trigonometry 1
    • Unit-3 8
    • Vector 4
    • Vector Algebra 6
    • Vector Product 3
    • wbcs 7
    • WBCS books 2
    • wbcs geometry 1
    • WBCS MAIN STRATEGY 2
    • wbcs math optional 4
    • WBCS PT PREP 1
    • wbcsPreliPrep2021 1

    Most Recent

    4/sidebar/recent

    Subscribe Us

    Your Responsive Ads Code (Google Ads)

    Comments

    4/comments/show

    Ad Code

    Responsive Advertisement

    Report Abuse

    Featured post

    Differentiation (Part-38) | S N De

    Admin- May 20, 2022

    Search This Blog

    Visitors

    Visitors

    Flag Counter

    Buy Now

    • Home
    • About Us
    • Contact Us

    Categories

    • Class XI (161)
    • Class XII (92)
    • Complex Numbers (6)
    • Compound Angles (8)
    • Differential Equation (23)
    • IIT JEE (1)
    • Limit (18)
    • Linear Differential Equation (5)
    • Mathematical Induction (4)
    • Multiple Angles (16)
    • Permutation (7)
    • Properties of Triangle (10)
    • combination (1)

    Tags

    • Complex Numbers (6)
    • Compound Angles (8)
    • FiveYearsPlanning (1)
    • GP (13)
    • GeneralScience (1)
    • Genral Soln (14)
    • GeographyOfIndia (7)
    • HOW TO GET SUCCESS IN WBCS (1)
    • IIT JEE (1)

    Categories

    • Book Reviews (1)
    • Class 11 (17)
    • Class XI (161)
    • Class XII (92)
    • Co-ordinate Geometry (24)
    • combination (1)
    • Complex Numbers (6)
    • Compound Angles (8)
    • conic sections (15)
    • Differential Equation (23)
    • Differentiation (38)
    • ebooks (3)
    • FiveYearsPlanning (1)
    • Free PDF (3)
    • GeneralScience (1)
    • Genral Soln (14)
    • GeographyOfIndia (7)
    • GP (13)
    • HOW TO GET SUCCESS IN WBCS (1)
    • HP (4)
    • HS MATH QUESTION PAPER 2022 (2)
    • Hyperbola (1)
    • IIT JEE (1)
    • IndianHistory (1)
    • IndianPolity (3)
    • INM (1)
    • Lagrange's MVT (3)
    • Limit (18)
    • Linear Differential Equation (5)
    • Mathematical Induction (4)
    • Maths Solution (32)
    • Multiple Angles (16)
    • parabola (1)
    • Permutation (7)
    • Plane (5)
    • Properties of Triangle (10)
    • pscclerkship (3)
    • Quadratic Equation (20)
    • Relation and Mapping (8)
    • Rolle's Theorem (5)
    • S N Dey (162)
    • S N Dey mathematics (17)
    • S.N.DeyMathSolution (223)
    • Sequence and series (31)
    • Set theory (5)
    • SN Dey Math Solution Class 11 (1)
    • ssc_cgl (1)
    • straight line (15)
    • Submultiple Angles (8)
    • SultaniPeriod (1)
    • Tangent and Normal (9)
    • Transf of sums and products (7)
    • Trig Ratios of Acute Angles (10)
    • Trigonometry (1)
    • Unit-3 (8)
    • Vector (4)
    • Vector Algebra (6)
    • Vector Product (3)
    • wbcs (7)
    • WBCS books (2)
    • wbcs geometry (1)
    • WBCS MAIN STRATEGY (2)
    • wbcs math optional (4)
    • WBCS PT PREP (1)
    • wbcsPreliPrep2021 (1)

    Tags

    Facebook

    • Home
    • About Us
    • Privacy Policy
    • Copyright
    • Disclaimer
    • Terms and Conditions

    Trending Articles

    Powered by Blogger
    Examprepp

    About Us

    This website intends to help students to compete for different exams with special importance to maths (specially S.N.Dey Maths and competitive maths) and help them prepared to appear for brighter future.

    Follow Us

    • Home
    • About

    Footer Copyright

    Design by - Blogger Templates | Distributed by Free Blogger Templates

    Contact form