$\,19.\,$ If the $\,p\,$-th , $\,q\,$-th and $\,r\,$-th terms of an A.P. be $\,P, Q, R\,$ respectively, then show that , $\,p(Q-R)+q(R-P)+r(P-Q)=0.$
Sol. Let $\,a\,$ be the first term and $\,d\,$ be the common difference of the given A.P.
So, $\,t_p=P=a+(p-1)d,\\t_q=Q=a+(q-1)d,\\ t_r=R=a+(r-1)d.$
Now, $\,Q-R\\=[a+(q-1)d]-[a+(r-1)d]\\=(q-r)d.$
Similarly, $\,R-P=(r-p)d,\\ P-Q=(p-q)d.$
Now, $\,p(Q-R)+q(R-P)+r(P-Q)\\=p\times (q-r)d+q \times (r-p)d+r \times (p-q)d\\=d \times [p(q-r)+q(r-p)+r(p-q)]\\=d \times [pq-pr+qr-pq+rp-qr]\\=d \times 0\\=0\,\,\text{(proved)}$
$\,20(i)\,$ If $\,\frac{b+c}{a},\frac{c+a}{b},\frac{a+b}{c}\,\,$ are in A.P. show that $\,\frac 1a,\frac 1b,\frac 1c\,\,$ are also in A.P. $\,\,(a+b+c \neq 0)$
Sol. $\,\frac{b+c}{a},\frac{c+a}{b},\frac{a+b}{c}\,\,$ are in A.P. (Given)
$\Rightarrow \,\left(\frac{b+c}{a}+1\right),\left(\frac{c+a}{b}+1\right),\left(\frac{a+b}{c}+1\right)\,\,$ are in A.P.
$\Rightarrow \,\left(\frac{b+c+a}{a}\right),\left(\frac{c+a+b}{b}\right),\left(\frac{a+b+c}{c}\right)\,\,$ are in A.P.
$\Rightarrow \,\left[\frac{b+c+a}{a(a+b+c)}\right],\left[\frac{c+a+b}{b(a+b+c)}\right],\left[\frac{a+b+c}{c(a+b+c)}\right]\,\,$ are in A.P.
$\Rightarrow \frac{1}{a},\frac{1}{b},\frac{1}{c}\,\,$ are in A.P. $[\,\because\,a+b+c \neq 0]$
$\,20(ii)\,$ Let $\,a(a \neq 0)\,\,$ is a fixed real number and $\,\frac{a-x}{px}=\frac{a-y}{qy}=\frac{a-z}{rz}.\,\,$ If $\,p,q,r\,$ are in A.P. , show that $\,\frac 1x,\frac 1y,\frac 1z\,$ are in A.P.
Sol. Let $\,\frac{a-x}{px}=\frac{a-y}{qy}=\frac{a-z}{rz}= m(\neq 0) \\ \therefore \frac{a-x}{px}=m \Rightarrow p=\frac{a-x}{mx}, \\~~~~ \frac{a-y}{qy}=m \Rightarrow q=\frac{a-y}{my}, \\ ~~~~\frac{a-z}{rz}=m \Rightarrow r=\frac{a-z}{mz}.$
If $\,p,q,r\,$ are in A.P. , $\,\,p+r=2q \\ \Rightarrow \frac{a-x}{mx}+\frac{a-z}{mz}=\frac{2(a-y)}{my} \\ \Rightarrow \frac{a-x}{x}+\frac{a-z}{z}=\frac{2(a-y)}{y} \\ \Rightarrow \frac ax-1+ \frac az-1=2\left(\frac ay-1\right) \\ \Rightarrow \frac ax+\frac az-2=\frac{2a}{y}-2 \\ \Rightarrow \frac ax+\frac az=\frac{2a}{y} \\ \Rightarrow \frac ix+\frac 1z=\frac{2}{y} \rightarrow(1)$
Hence, from $\,(1),\,$ we can conclude that $\,\frac 1x,\frac 1y,\frac 1z\,$ are in A.P.
$\,20(iii)\,$ If $\,a+c=2b\,\,$ and $\,ab+cd+ad=3bc,\,\,$ prove that the four numbers $\,a,b,c,d\,$ are in A.P. $\,\,(b \neq 0)$
Sol. $\,a+c=2b\,\,\text{(Given)} \\ \Rightarrow a+c=b+b \\ \Rightarrow c-b=b-a \rightarrow(1)$
Again, $\,ab+cd+ad=3bc \\ \Rightarrow cd+ad=3bc-ab \\ \Rightarrow d(c+a)=b(3c-a) \\ \Rightarrow d \times 2b=b(3c-a) \\ \Rightarrow d=\frac{3c-a}{2} \\ \Rightarrow d-c=\frac{3c-a}{2} -c \\ \Rightarrow d-c=\frac{3c-a-2c}{2} \\ \Rightarrow d-c=\frac{c-a}{2} \\ \Rightarrow d-c=\frac{2c-(a+c)}{2} \\ \Rightarrow d-c=\frac{2c-2b}{2}=c-b\rightarrow(2)$
Hence, from $\,(1),\,(2)\,\,$ it follows that
$\,b-a=c-b=d-c\,\,$ and so the four numbers $\,a,b,c,d\,$ are in A.P.
To download full PDF solution of Arithmetic Progression (SEQUENCE AND SERIES) of S.N.De Math solution, click here.
$\,21.\,$ Find the least value of $\,n\,$ for which the sum of the series $\,\, 20+28+36+\cdots\text{to n terms}\,\,$ is greater than $\,1000.$
Sol. Consider the given series $\,\, 20+28+36+\cdots\text{to n terms}\,\,$ where first term $(a)=20,\,$ common difference $(d)=8.$
So, $\,S_n=\frac{n}{2}[2 \times 20+(n-1)\times 8]\\~~~~~=n[20+(n-1)\times 4]\\~~~~~=n(16+4n)$
Now, from the given condition, $\, S_n >1000 \\ \Rightarrow n(16+4n)>1000 \\ \Rightarrow 4n^2+16n >1000 \\ \Rightarrow 4(n^2+4n)> 4 \times 250 \\ \Rightarrow n^2+4n >250 \\ \Rightarrow n^2+4n-250 >0 \rightarrow(1)$
If we take $\,P(n)= n^2+4n-250 ,$ then we notice $\,P(13)<0\,$ but $\,P(14)>0$ and so the least value of $\,n\,$ for which the sum of the series $\,\, 20+28+36+\cdots\text{to n terms}\,\,$ is greater than $\,1000\,$ is $\,14.$
Alternatively, from $\,(1),\,$ we get , $\,n^2+4n+4>250+4 \\ \Rightarrow (n+2)^2>254 \rightarrow(2)$
Now the next square number after $\,254\,$ is $\,256=16^2\,$ so that from $\,(2),\,$ we get,
$\,\, (n+2)^2=256=16^2 \\ \Rightarrow n+2=16 \\ \Rightarrow n=16-2=14\,\text{(ans)}$
$\,22.\,$ The $\,n\,$-th term of a series in A.P. is $\,an+b.\,\,$ Find the sum of the series up to $\,\,n\,$ terms.
Sol. Here, $\,t_n=an+b\,\,\text{(Given)}$
So, $\,\,t_1+t_2+t_3+\cdots+t_n\\=(a\cdot 1+b)+(a \cdot 2+b)+(a \cdot 3+b)\\+\cdots +(a\cdot n +b)\\=a(1+2+3+\cdots +n)+nb\\=a\cdot \frac{n(n+1)}{2}+nb\\=\frac n2[a(n+1)+2b]\,\,\text{(ans.)}$
Please do not enter any spam link in the comment box