Some facts about "Differentiation" :
12. If $~~f(x)=\frac 1x,~$ then find the value of $\, \theta\,$ in the mean value theorem $~~f(x+h)=f(x)+hf'(x+\theta h),~0 <\theta<1.$
Sol. We have, $~f(x)=\frac 1x=x^{-1} \rightarrow(1), \\ \therefore~f'(x)=-x^{-1-1}=-\frac{1}{x^2}\rightarrow(2)$
Now, from the mean value theorem we get,
$~~f(x+h)=f(x)+hf'(x+\theta h) \\ \text{or,}~~\frac{1}{x+h}=\frac 1x+h~\cdot\left[-\frac{1}{(x+\theta h)^2}\right]~~[\text{By (1),(2)}] \\ \text{or,}~~ \frac{1}{x+h}-\frac 1x=-\frac{h}{(x+ \theta h)^2} \\ \text{or,}~~ \frac{x-(x+h)}{x(x+h)}=-\frac{h}{(x+\theta h)^2} \\ \text{or,}~~ \frac{x-x-h}{x(x+h)}=-\frac{h}{(x+\theta h)^2} \\ \text{or,}~~ \frac{-h}{x(x+h)}=\frac{-h}{(x+\theta h)^2}~~[\because~ h\neq 0] \\ \therefore~~x(x+h)=(x+\theta h)^2 \\ \text{or,}~~ x^2+xh=x^2+2xh \theta+\theta^2h^2 \\\text{or,}~~ xh=2xh \theta+\theta^2h^2 \\ \text{or,}~~ \theta^2h^2+2xh\theta-xh=0 \\ \text{or,}~~ \theta =\frac{-2xh \pm \sqrt{(2xh)^2-4(-xh)\cdot h^2}}{2h^2} \\ \text{or,}~~ \theta=\frac{-2xh \pm \sqrt{4x^2h^2+4xh \cdot h^2}}{2h^2} \\ \text{or,}~~ \theta=\frac{-2xh \pm \sqrt{4h^2(x^2+xh)}}{2h^2}\\ \text{or,}~~ \theta=\frac{-2xh \pm 2h\sqrt{x^2+xh}}{2h^2} \\ \text{or,}~~ \theta=\frac{2h(-x \pm \sqrt{x^2+xh})}{2h \cdot h}\\ \text{or,}~~ \theta=\frac{\sqrt{x^2+xh}-x}{h}~~\text{(ans.)}$
13. Using Lagrange's mean value theorem, find a point on the curve $~~y=\sqrt{x-2}~$ defined in the interval $~[2,3]~$ where the tangent to the curve is parallel to the chord joining the end points of the curve.
Sol. let $~~y=f(x)=\sqrt{x-2}\rightarrow(1) \\ \therefore f'(x)\\=\frac{d}{dx}(x-2)^{1/2}\\=\frac 12(x-2)^{\frac 12-1}\\=\frac{1}{2\sqrt{x-2}}\rightarrow(2)$
Now, for $~f(x)~$ to be defined in $~[2,3]~$ we must have $~x-2 \geq 0~~$ which means $~~x \geq 2.$
Clearly, $~f(x)~$ is continuous in $~[2,3]~,$ differentiable in $~(2,3)~.$ So, according to Lagrange's mean value theorem, there exists at least one value of $~x~$ say $~x=c \in (2,3)~$ such that
$~~f'(c)=\frac{f(3)-f(2)}{3-2} \\ \text{or,}~~\frac{1}{2\sqrt{c-2}}=\frac{\sqrt{3-2}-\sqrt{2-2}}{1}~~~[\text{By (1),(2)}] \\ \text{or,}~~\frac{1}{2\sqrt{c-2}}=\sqrt{1}-0=1 \\ \text{or,}~~\left(\frac{1}{2\sqrt{c-2}}\right)^2 =1^2 \\ \text{or,}~~ \frac{1}{4(c-2)}=1 \\ \text{or,}~~4c-8=1 \\ \text{or,}~~ 4c=1+8 \\ \text{or,}~~ 4c=9 \\ \text{or,}~~ c=\frac 94 $
Now, for $~c=\frac 94~,$ the corresponding value of
$~~~f(c)\\=\sqrt{\frac 94-2}\\=\sqrt{\frac{9-8}{4}}\\=\sqrt{\frac 14}\\=\frac 12.$
Hence, the point on the curve $~~y=\sqrt{x-2}~$ defined in the interval $~[2,3]~$ where the tangent to the curve is parallel to the chord joining the end points of the curve is $~~~(\frac 94,\frac 12).$
Elements of Mathematics For Class XII (Vol-I and Vol-II) Paperback
14. Using Lagrange's mean value theorem, find a point on the curve $~~y=x^2~$ where the tangent to the curve is parallel to the line joining the points $~(1,1)~$ and $~(2,4).$
Sol. Here the given curve $~y=x^2=f(x)~\text{(say)}\rightarrow(1) \\ \therefore~f'(x)=2x\rightarrow(2)$
Clearly, $~f(x)~$ is a polynomial function which is continuous and differentiable everywhere in a finite interval. In this problem, we consider the interval $~[1,2].$
Hence, Lagrange's mean value theorem is applicable here. So, there exists a point $~c \in (1,2)~$ such that
$~~~f'(c)=\frac{f(2)-f(1)}{2-1}\\ \text{or,}~~2c=\frac{2^2-1^2}{1}~~[\text{By (1),(2)}] \\ \text{or,}~~2c=4-1 \\ \text{or,}~~2c=3 \\ \text{or,}~~ c=\frac 32.$
Finally, $~~f(c)=c^2 \Rightarrow f(3/2)=(3/2)^2=\frac{9}{4}.$
So, $~~(c,f(c))=\left(\frac 32, \frac 94 \right)~$ is the required point on the curve $~~y=x^2~$ where the tangent to the curve is parallel to the line joining the points $~(1,1)~$ and $~(2,4).$
Please do not enter any spam link in the comment box