Ad-1

if( aicp_can_see_ads() ) {

Vector Product (Part-3) | S N Dey | Class 12

In the previous article we discussed Very Short Answer Type Questions from question no. 11 to 17 from the Chapter Product of Two Vectors of Chhaya Mathematics (Class XII) or alternatively S N Dey mathematics class 12 . In this article, we will solve problems related to Short Answer Type Questions of the aforementioned book . Here we will solve few more problem related to Vector Product . So, without wasting time , let’s start.

 

Product of two Vectors


1.  Two vectors $~~\vec{a}~~$ and $~~\vec{b}~~$ are such that $~~|\vec{a}|=2,~~|\vec{b}|=1~~$ and $~~\vec{a} \cdot \vec{b}=1;~~$ then find the value of $~~(3\vec{a}-5\vec{b})\cdot (2\vec{a}+7\vec{b}).$


Solution.


$(3\vec{a}-5\vec{b})\cdot (2\vec{a}+7\vec{b}) \\= 6\vec{a}\cdot \vec{a}+21 \vec{a}\cdot \vec{b}-10\vec{b}\cdot \vec{a}-35 \vec{b}\cdot \vec{b}\\= 6|\vec{a}|^2+11\vec{a}\cdot \vec{b}-35|\vec{b}|^2 \\= 6 \times 2^2+11 \times 1-35 \times 1^2 \\= 24+11-35\\=35-35\\=0~~\text{(ans.)}$


2(i)  If $~~|\vec{a}|=2,~~|\vec{b}|=3~~\text{and}~~\vec{a} \cdot \vec{b}=3,~~$ then find the projection of $~~\vec{b}~~$ on $~~\vec{a}.$


Solution.


The projection of $~~\vec{b}~~$ on $~~\vec{a}~~$ is given by :

$= \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac 32~~\text{(ans.)}$


$(ii)~~$ If projection of vector $~~\lambda \hat{i}-\hat{j}~~$ on vector $~~\hat{i}+\hat{j}~~$ is zero, find $~~\lambda.$


Solution.


According to the problem,

$\frac{(\hat{i}+\hat{j}) \cdot (\lambda \hat{i}-\hat{j})}{|\hat{i}+\hat{j}|}=0 \\ \text{or,}~~ \frac{\lambda (\hat{i} \cdot \hat{i})-\hat{i} \cdot \hat{j}+\lambda (\hat{j} \cdot \hat{i})-\hat{j} \cdot \hat{j}}{\sqrt{1^2+1^2}}=0 \\ \text{or,}~~ \lambda-1=0 ~~[~~ \because ~\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{i}=0 ~] \\ \therefore~\lambda=1 ~~\text{(ans.)}$


3.  If $~~|\vec{a}|=4~~\text{and}~~|\vec{b}|=3,~~$ find the value of $~~\lambda~~$ for which the vectors $~~\vec{a}+\lambda \vec{b}~~$ and $~~\vec{a}-\lambda \vec{b}~~$ are perpendicular to each other.


Solution.


Since the vectors $~~\vec{a}+\lambda \vec{b}~~$ and $~~\vec{a}-\lambda \vec{b}~~$ are perpendicular to each other,

$ (\vec{a}+\lambda \vec{b}) \cdot (\vec{a}-\lambda \vec{b})=0 \\ \text{or,}~~ \vec{a} \cdot \vec{a}-\lambda \vec{a} \cdot \vec{b}+\lambda \vec{b} \cdot \vec{a}-\lambda^2 \vec{b} \cdot \vec{b}=0\\ \text{or,}~~ |\vec{a}|^2-\lambda^2|\vec{b}|^2=0 ~~(~\because ~~\vec{b} \cdot \vec{a}=\vec{a} \cdot \vec{b} ) \\ \text{or,}~~4^2-\lambda^2 \times 3^2=0 \\ \text{or,}~~ 16=9\lambda^2 \\ \text{or,}~~ \lambda=\pm \sqrt{\frac{16}{9}}=\pm \frac 43~~~\text{(ans.)} $


4.   The vectors $~~\vec{a},~\vec{b},~\vec{c}~~$ are such that $~~ \vec{a}+\vec{b}+\vec{c}=\vec{0}. ~~$ If $~~|\vec{a}|=3,~~|\vec{b}|=4~~\text{and}~~ |\vec{c}|=5,~~$ show that $~~\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-25.$


Solution.


$~\because~~ \vec{a}+\vec{b}+\vec{c}=\vec{0}, \\ ~\therefore~~ (\vec{a}+\vec{b}+\vec{c})\cdot (\vec{a}+\vec{b}+\vec{c})=0 \\ \text{or,}~~|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\\~+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\ \text{or,}~~ 3^2+4^2+5^2\\~~+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\ \text{or,}~~ 50 +2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\ \text{or,}~~2 \times [25+(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})]=0 \\ \text{or,}~~ 25+(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\ \therefore~~ (\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=-25~~\text{(showed)} $


5. If $~~\vec{a}=\hat{i}-\hat{j} +2\hat{k},~~\vec{b}=\hat{i}+\hat{j} +\hat{k}~~$ and $~~ \vec{c}=2\hat{i}-\hat{j} +\hat{k},~~$ find the vector $~~\vec{r}~~$ satisfying the relations, $~~\vec{a} \cdot \vec{r}=1,~~\vec{b} \cdot \vec{r}=2~~$ and $~~\vec{c} \cdot \vec{r}=5.$


Solution.


let $~~\vec{r}=x\hat{i}+y\hat{j} +z\hat{k}$

$~ \vec{a} \cdot \vec{r}=1 \\ \text{or,}~~(\hat{i}-\hat{j} +2\hat{k}) \cdot (x\hat{i}+y\hat{j} +z\hat{k})=1 \\ \text{or,}~~x-y+2z=1\rightarrow(1) $

$~ \vec{b} \cdot \vec{r}=1 \\ \text{or,}~~(\hat{i}+\hat{j} +\hat{k}) \cdot (x\hat{i}+y\hat{j} +z\hat{k})=1 \\ \text{or,}~~x+y+z=1\rightarrow(2) $

$~ \vec{c} \cdot \vec{r}=1 \\ \text{or,}~~(2\hat{i}-\hat{j} +\hat{k}) \cdot (x\hat{i}+y\hat{j} +z\hat{k})=1 \\ \text{or,}~~2x-y+z=1\rightarrow(3) $

Adding $~~(1)~~\text{and}~~(2)~~$ we get,

$(x-y+2z)+(x+y+z)=1+2 \\ \text{or,}~~ 2x+3z-3=0\rightarrow(4)$

Adding $~~(2)~~\text{and}~~(3)~~$ we get,

$(x+y+z)+(2x-y+z)=2+5 \\ \text{or,}~~ 3x+2z-7=0\rightarrow(5)$

From $~~(4)~~\text{and}~~(5)~~$ we get,

$ \frac{x}{-21-(-6)}=\frac{z}{-9-(-14)}=\frac{1}{4-9} \\ \text{or,}~~ \frac{x}{-15}=\frac{z}{5}=\frac{1}{-5} \\ ~\therefore~ x=\frac{-15}{-5}=3, ~~y=\frac{5}{-5}=-1.$


JEE Advanced Mathematics - Algebra Paperback


$6.~~$ If $~~\vec{\alpha}~~$ and $~~\vec{\beta}~~$ are perpendicular to each other , show that


$(i)~ |\vec{\alpha}+\vec{\beta}|^2=|\vec{\alpha}|^2+|\vec{\beta}|^2\\~~~~~(ii)~~~|\vec{\alpha}+\vec{\beta}|^2=|\vec{\alpha}-\vec{\beta}|^2$


Solution.


Since $~~\vec{\alpha}~~$ and $~~\vec{\beta}~~$ are perpendicular to each other ,

$ \vec{\alpha} \cdot \vec{\beta}=0=\vec{\beta} \cdot \vec{\alpha}\rightarrow(1)$

$ |\vec{\alpha}+\vec{\beta}|^2\\~~~~=(\vec{\alpha}+\vec{\beta}) \cdot (\vec{\alpha}+\vec{\beta})\\~~~~=\vec{\alpha} \cdot \vec{\alpha} + \vec{\alpha} \cdot \vec{\beta}+\vec{\beta} \cdot \vec{\alpha}+\vec{\beta} \cdot \vec{\beta}\\~~~~=|\vec{\alpha}|^2+0+0+|\vec{\beta}|^2~~[\text{By (1)}]\\~~~~=|\vec{\alpha}|^2+ |\vec{\beta}|^2~~~\text{(showed)}$


Solution. $~~~(ii)$


$~|\vec{\alpha}+\vec{\beta}|^2-|\vec{\alpha}-\vec{\beta}|^2\\~~~~=(|\vec{\alpha}|^2+|\vec{\beta}|^2+2\vec{\alpha}\cdot \vec{\beta})-(|\vec{\alpha}|^2+|\vec{\beta}|^2-2\vec{\alpha} \cdot \vec{\beta})\\~~~~=4\vec{\alpha} \cdot \vec{\beta}\\~~~~=0~~[~\text{By (1)}] \\ \therefore~|\vec{\alpha}+\vec{\beta}|^2=|\vec{\alpha}-\vec{\beta}|^2~~\text{(showed)}$


$7(i)~~~ A(p,1,-1),~~B(2p,0,2)~~$ and $~~C(2+2p,p,p)~~$ are three points. Find the value of $~~p~~$ so that the vectors $~~\vec{AB}~~\text{and} ~~~\vec{BC}~~$ are perpendicular to each other.


Solution.


According to the problem, suppose that the position vectors of

$A=p\hat{i}+\hat{j} -\hat{k}, ~~B= 2p\hat{i}+2\hat{k},\\~~~~~C=(2+2p)\hat{i}+p\hat{j} +p\hat{k}$

$\text{So,}~~\vec{AB}\\=(2p\hat{i}+2\hat{k})-(p\hat{i}+\hat{j} -\hat{k})\\=(2p-p)\hat{i}-\hat{j} +(2+1)\hat{k}\\=p\hat{i}-\hat{j} +3\hat{k}$

$\text{Again,}~~\vec{BC}\\=[(2+2p)\hat{i}+p\hat{j} +p\hat{k}]-(2p\hat{i}+2\hat{k})\\=(2+2p-2p)\hat{i}+p\hat{j} +(p-2)\hat{k} \\=2\hat{i}+p\hat{j} +(p-2)\hat{k}$

$ \because~~\vec{AB} \perp \vec{BC},\\~~\vec{AB} \cdot \vec{BC}=0 \\ \text{or,}~~(p\hat{i}-\hat{j} +3\hat{k}) \cdot [2\hat{i}+p\hat{j} +(p-2)\hat{k}]=0 \\ \text{or,}~~ 2p-p+3(p-2)=0 \\ \text{or,}~~ p+3p-6=0 \\ \text{or,}~~ 4p-6=0 \\ \text{or,}~~ 4p=6 \\ \text{or,}~~ p=\frac 64=\frac 32~~\text{(ans.)} $


$(ii)~~$ If $~~ \vec{\alpha}=\hat{i}+2\hat{j} -3\hat{k}~~\text{and}~~\vec{\beta}=3\hat{i}-\hat{j} +2\hat{k},~~$ find the cosine of the angle between the vectors $~~ (2\vec{\alpha}+\vec{\beta})~~\text{and} ~~ (\vec{\alpha}+2\vec{\beta}).$

Solution.

$(2\vec{\alpha}+\vec{\beta}) \\=2(\hat{i}+2\hat{j} -3\hat{k})+(3\hat{i}-\hat{j} +2\hat{k}) \\= 5\hat{i}+3\hat{j} -4\hat{k} \\ ~\therefore~~ |2\vec{\alpha}+\vec{\beta}| \\= \sqrt{5^2+3^2+(-4)^2}\\=\sqrt{25+9+16}\\=\sqrt{50}\rightarrow(1) \\~~~\\~~~ (\vec{\alpha}+2\vec{\beta})\\= (\hat{i}+2\hat{j} -3\hat{k})+2(3\hat{i}-\hat{j} +2\hat{k}) \\=7\hat{i} +\hat{k}\\ ~~\\~~\therefore~ |\vec{\alpha}+2\vec{\beta}|=\sqrt{7^2+1^2}=\sqrt{50}\rightarrow(2)$

$(2\vec{\alpha}+\vec{\beta}) \cdot (\vec{\alpha}+2\vec{\beta})\\=(5\hat{i}+3\hat{j} -4\hat{k}) \cdot (7\hat{i} +\hat{k})\\=35-4\\=31 \rightarrow(3)$

If $~~\theta~~$ be the angle $~~ (2\vec{\alpha}+\vec{\beta})~~\text{and}~~ (\vec{\alpha}+2\vec{\beta})~~$ then

$ \cos\theta\\=\frac{(2\vec{\alpha}+\vec{\beta}) \cdot (\vec{\alpha}+2\vec{\beta})}{|2\vec{\alpha}+\vec{\beta}||\vec{\alpha}+2\vec{\beta}|}\\=\frac{31}{\sqrt{50} \sqrt{50}}~~~[\text{By (1),(2),(3)}]\\=\frac{31}{50}~~\text{(ans.)} $


JEE Advanced Mathematics - Coordinated Geometry Paperback

$8(i)~~$ Show that the vector $~~\vec{a}~~$ is perpendicular to the vector $~~\vec{b}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}~\vec{a}.$

Solution.

$\vec{a} \cdot \left(\vec{b}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}~\vec{a}\right)\\~~=\vec{a} \cdot \vec{b}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}(\vec{a} \cdot \vec{a})\\~~=\vec{a} \cdot \vec{b}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} |\vec{a}|^2\\~~=\vec{a} \cdot \vec{b}-\vec{a}\cdot \vec{b}\\~~=0\rightarrow(1)$

Hence by $~(1)~$ , the result follows.


$(ii)~~$ For any two vectors $~~\vec{a}~~\text{and}~~\vec{b}~~$ show that $~~|\vec{a} \cdot \vec{b}| \leq |\vec{a}||\vec{b}|.$


Solution.


If $~~\theta~~$ is the angle between any two vectors $~~\vec{a}~~\text{and}~~\vec{b},$

$ \vec{a}\cdot \vec{b}=|\vec{a}||\vec{b}| \cos\theta \\ \text{or,}~~ \cos\theta =\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\rightarrow(1) $

$\text{Now,}~~ |\cos\theta| \leq 1 \rightarrow(2) $

So, by $~~(1)~~\text{and}~~(2),~~$ we get

$ \left|\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right| \leq 1 \Rightarrow |\vec{a} \cdot \vec{b}| \leq |\vec{a}||\vec{b}|.$


9.  If $~~\vec{a},~~\vec{b},~~\vec{c}~~$ are non-coplanar vectors $~~\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0,~~$ show that $~~\vec{r}~~$ is a zero vector.


Solution.


let $~~ \vec{r}=x\vec{a}+y\vec{b} +z\vec{c}~~$ where $~~x,y,z~~$ are scalars.

$\vec{r} \cdot \vec{a}=0 \\ \Rightarrow x|\vec{a}|^2+y~\vec{a} \cdot \vec{b}+z~ \vec{a} \cdot \vec{c}=0\rightarrow(1) \\~~~ \vec{r} \cdot \vec{b}=0 \\ \Rightarrow x~ \vec{a} \cdot \vec{b}+y|\vec{b}|^2+z~ \vec{b} \cdot \vec{c}=0\rightarrow(2) \\~~~ \vec{r} \cdot \vec{c}=0 \\ \Rightarrow x~\vec{a} \cdot \vec{c}+y~\vec{b} \cdot \vec{c}+z |\vec{c}|^2=0\rightarrow(3)$

$ \begin{vmatrix} |\vec{a}|^2 &\vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ ~\vec{a} \cdot \vec{b} & |\vec{b}|^2 & \vec{b} \cdot \vec{c} \\ ~\vec{a} \cdot \vec{c} &\vec{b} \cdot \vec{c} & |\vec{c}|^2 \\ \end{vmatrix}=[\vec{a}~~\vec{b}~~\vec{c}] \neq 0$

Since $~~\vec{a},~~\vec{b},~~\vec{c}~~$ are non-coplanar vectors, the only solution of $~(1),~(2),~(3)~$ is :

$ x=y=z=0 \Rightarrow \vec{r}=\vec{0} ~~$ and hence the result follows.


10(i)  For the vectors $~~\vec{a}~~\text{and}~~\vec{b}~~$ if $~~|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|,~~$ show that $~~\vec{a}~~\text{and}~~\vec{b}~~$ are perpendicular.


Solution.


$ |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \\ \text{or,}~~ |\vec{a}+\vec{b}|^2=|\vec{a}-\vec{b}|^2 \\ \text{or,}~~ (\vec{a}+\vec{b}) \cdot (\vec{a}+\vec{b})=(\vec{a}-\vec{b}) \cdot (\vec{a}-\vec{b}) \\ \text{or,}~~ |\vec{a}|^2+|\vec{b}|^2+2\vec{a} \cdot \vec{b}=|\vec{a}|^2+|\vec{b}|^2-2\vec{a} \cdot \vec{b} \\ \text{or,}~~ 2\vec{a}\cdot \vec{b}=-2\vec{a} \cdot \vec{b} \\ \text{or,}~~ 4\vec{a} \cdot \vec{b}=0 \\ \text{or,}~~ \vec{a} \cdot \vec{b}=0 \\ \therefore~~\vec{a} \perp \vec{b}. $


$(ii)~~~$ Prove that $~~( \vec{a}+\vec{b}) \cdot (\vec{a}+\vec{b})=|\vec{a}|^2+|\vec{b}|^2,~~$ if and only if $~~\vec{a},~~\vec{b}~~$ are perpendicular , given $~~ \vec{a} \neq \vec{0},~~ \vec{b} \neq \vec{0}.$


Solution.


$( \vec{a}+\vec{b}) \cdot (\vec{a}+\vec{b})=|\vec{a}|^2+|\vec{b}|^2 \\ \text{or,}~~ \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b}\cdot \vec{a}+\vec{b} \cdot \vec{b}=|\vec{a}|^2+|\vec{b}|^2 \\ \text{or,}~~ |\vec{a}|^2+2\vec{a} \cdot \vec{b}+|\vec{b}|^2=|\vec{a}|^2+|\vec{b}|^2 \\ \text{or,}~~ 2\vec{a} \cdot \vec{b}=0 \\ \text{or,}~~ \vec{a} \cdot \vec{b}=0 \\ \therefore~~ \vec{a} \perp \vec{b}~~~\text{(proved )}$


$11.~~$ If $~~\hat{i},~~\hat{j}~~\text{and}~~\hat{k}~~$ are unit vectors along three mutually perpendicular axes and $~~ \vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}~ ; ~~\vec{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k}~~\text{and}~~ \vec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}~~$ prove that

$(i)~ \vec{a} \cdot (\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} ~~(ii)~~(\vec{b}+\vec{c}) \times \vec{a}=\vec{b} \times \vec{a}+\vec{c} \times \vec{a}$


Solution. $~~(i)$


$(\vec{b}+\vec{c})\\~~~=(b_1+c_1)\hat{i}+(b_2+c_2)\hat{j}+(b_3+c_3)\hat{k}$

$\vec{a} \cdot(\vec{b}+\vec{c}) \\= (a_1\hat{i}+a_2\hat{j}+a_3\hat{k}) \cdot [(b_1+c_1)\hat{i}+(b_2+c_2)\hat{j}+(b_3+c_3)\hat{k}]\\=a_1(b_1+c_1)+a_2(b_2+c_2)+a_3(b_3+c_3) \\= (a_1b_1+a_2b_2+a_3b_3)+(a_1c_1+a_2c_2+a_3c_3)\rightarrow(1) $

$ \vec{a} \cdot \vec{b}\\=(a_1\hat{i}+a_2\hat{j}+a_3\hat{k})\cdot (b_1\hat{i}+b_2\hat{j}+b_3\hat{k})\\=a_1b_1+a_2b_2+a_3b_3 \rightarrow(2)$

$ \vec{a} \cdot \vec{c}\\=(a_1\hat{i}+a_2\hat{j}+a_3\hat{k})\cdot (c_1\hat{i}+c_2\hat{j}+c_3\hat{k})\\=a_1c_1+a_2c_2+a_3c_3 \rightarrow(3)$

Hence, by $~(1),~(2),~(3)~$ we can conclude that

$\vec{a} \cdot (\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$


$(ii)~~(\vec{b}+\vec{c}) \times \vec{a} \\= \begin{vmatrix} \hat{i}&\hat{j} &\hat{k} \\ (b_1+c_1) & ~(b_2+c_2) &~(b_3+c_3) \\ a_1 &~a_2 &~a_3 \\ \end{vmatrix}\\~~~ \\= \begin{vmatrix} \hat{i}&\hat{j} &\hat{k} \\ b_1 & ~b_2 &~b_3 \\ a_1 &~a_2 &~a_3 \\ \end{vmatrix} + \begin{vmatrix} \hat{i}&\hat{j} &\hat{k} \\ c_1 & ~c_2 &~c_3 \\ a_1 &~a_2 &~a_3 \\ \end{vmatrix} \\= \vec{b} \times \vec{a}+\vec{c} \times \vec{a} ~~\text{(proved)}$


Read More :

Vector Product (Part-4) | S N Dey | Class 12

Vector Product (Part-5) | S N Dey | Class 12

Vector Product (Part-6) | S N Dey | Class 12

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.