Ad-1

if( aicp_can_see_ads() ) {

Straight Line | Part-2 |Ex-2C

Straight Line | Part-2 |Ex-2C



$1.~~A(4,6),~B(-1,3)~$ and $~C(2,-2)~$ are three given points . Find the length of the perpendicular from $~B~$ on $~AC.$ 


Solution.


Here the three given points are $~A(4,6),~B(-1,3)~$ and $~C(2,-2).$

So, the equation of $~AC~$ is 

$\frac{y-6}{6-(-2)}=\frac{x-4}{4-2} \\ \text{or,}~~ \frac{y-6}{8}=\frac{x-4}{2} \\ \text{or,}~~ \frac 14(y-6)=(x-4) \\ \text{or,}~~ 4(x-4)=y-6 \\ \text{or,}~~ 4x-y-10=0 \rightarrow(1)$

Now, the length of the perpendicular from the point $~B(-1,3)~$ to the straight line $~(1)~$ is 

$=\frac{|4(-1)-3-10|}{\sqrt{4^2+(-1)^2}}=\frac{|-4-3-10|}{\sqrt{16+1}}=\frac{17}{\sqrt{17}}=\sqrt{17}$


$2.~$ Find the perpendicular distance of the point $~(4,-1)~$ from the straight line through the points $~(1,1)~$ and $~(-11,-4).$


Solution.


The equation of the straight line joining the points $~(1,1)~$ and $~(-11,-4)~$ is 

$\frac{y-1}{1-(-4)}=\frac{x-1}{1-(-11)} \\ \text{or,}~~ \frac{y-1}{5}=\frac{x-1}{12} \\ \text{or,}~~ 5(x-1)=12(y-1) \\ \text{or,}~~ 5x-12y-5+12=0 \\ \text{or,}~~ 5x-12y+7=0 \rightarrow(1)$

So, the perpendicular distance of the point $~(4,-1)~$ from the straight line $~(1)~$ is 

$=\frac{|5 \times 4-12\times (-1)+7|}{\sqrt{5^2+(-12)^2}}=\frac{39}{13}=3~~\text{unit.}$


$3.~$ The equation to the base of an equilateral triangle is $~x+y=2~$ and its vertex is at $~(2,-1).$ Find the length of a side of the triangle.


Solution.


The equation to the base of an equilateral triangle is $~x+y=2~\rightarrow(1).$

Now, the perpendicular distance of the point $~(2,-1)~$ to the sl $~(1)~$ is 

$=\frac{|2+(-1)-2|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}~~\text{unit}$

We know that the height of the equilateral triangle is 

$~\frac{\sqrt{3}}{2} \times a~$ where $~a~$ is the length of the side of the $~\Delta$

$\therefore~ \frac{\sqrt{3}}{2} \times a=\frac{1}{\sqrt{2}} \\ \text{or,}~~a=\frac{1}{\sqrt{2}} \times \frac{2}{\sqrt{3}} =\frac{2}{\sqrt{6}}=\frac{2\sqrt{6}}{6}=\frac{\sqrt{6}}{3}~~\text{unit.}$


$4.~$ If the sum of the lengths of the perpendiculars dropped from a variable point $~P~$ on the two straight lines $~x+y=5~$ and $~3x-2y+7=0~$ be always equal to $~10~$ units, show that $~P~$ must move on a straight line.


Solution.


Let the co-ordinates of the variable point be $~P(h,k).$ 

Now, the distance of $~P(h,k)~$ to the straight line $~x+y=5~$ is 

$=\frac{|h+k-5|}{\sqrt{1^2+1^2}}=\frac{|h+k-5|}{\sqrt{2}}~~\text{unit}$

Again, the distance of $~P(h,k)~$ to the straight line $~3x-2y+7=0~$ is

$=\frac{|3h-2k+7|}{\sqrt{3^2+(-2)^2}}=\frac{|3h-2k+7|}{\sqrt{13}}~~\text{unit}$

According to the problem,

$\frac{|h+k-5|}{\sqrt{2}}+\frac{|3h-2k+7|}{\sqrt{13}}=10 \\ \text{or,}~~ \pm \frac{h+k-5}{\sqrt{2}} \pm\frac{3h-2k+7}{\sqrt{13}}=10  \\ \text{or,}~~ \pm\sqrt{13}(h+k-5) \pm \sqrt{2}(3h-2k+7)\\~~=10\sqrt{26}  \\ \text{or,}~~ (\pm \sqrt{13} \pm 3\sqrt{2})h+( \pm \sqrt{13}\\ \mp 2\sqrt{2})k \mp 5\sqrt{13}\pm 7\sqrt{2} -10\sqrt{26}=0$

So, the locus of the point $~P(h,k)~$ is 

$(\pm \sqrt{13} \pm 3\sqrt{2})x+( \pm \sqrt{13} \mp 2\sqrt{2})y\\ \mp 5\sqrt{13}\pm 7\sqrt{2} -10\sqrt{26}=0.$


$5.~$ If $~p_1~$ and $~p_2~$ be the lengths of the perpendiculars from the origin upon the lines $~x\sin\theta+y\cos\theta=\frac a2 \sin2\theta~$ and $~x\cos\theta-y\sin\theta=a\cos2\theta~$,  prove that, $~4p_1^2+p_2^2=a^2.$


Solution.


The perpendicular distance of the straight line $~x\sin\theta+y\cos\theta=\frac a2 \sin2\theta~$  from the origin $~(0,0)~$ is given by 

$~p_1=\frac{|0+0-(a/2)\sin2\theta|}{\sqrt{\sin^2\theta+\cos^2}}=|(a/2)\sin2\theta|$

Again, the distance of the straight line $~x\cos\theta-y\sin\theta=a\cos2\theta~$ from the origin $~(0,0)~$ is

$p_2=\frac{|0-0-a\cos2\theta|}{\sqrt{\cos^2\theta+\sin^2\theta}}=|a\cos2\theta|$

$\therefore~4p_1^2+p_2^2\\=4 \cdot \left(\frac a2 \sin2\theta\right)^2+(a\cos2\theta)^2\\=a^2(\sin^22\theta+\cos^22\theta)\\=a^2~~\text{(proved)}$


Disha Objective NCERT Xtract Mathematics for NTA JEE Main 6th Edition One Liner Theory, MCQs on every line of NCERT, Tips on your Fingertips, Previous ... Bank, Mock Tests, Useful for BITSAT & VITEEE Paperback 



$6.~$ Show that the product of two perpendiculars from the two points $~( \pm 4,0)~$ upon the sl $~3x\cos\theta+5y\sin\theta=15~$ is independent of $~\theta.$


Solution.


The perpendicular distance of the point $~(4,0)~$ from the sl $~3x\cos \theta+5y \sin \theta=15~$ is 

$~d_1=\frac{|4 \times 3\cos p-15|}{\sqrt{(3\cos \theta)^2+(5\sin \theta)^2}}=\frac{3|4\cos \theta-5|}{\sqrt{9\cos^2\theta+25 \sin^2\theta}}$

Again, the perpendicular distance of the point $~(-4,0)~$ from the sl $~3x\cos\theta+5y\sin\theta=15~$ is 

$d_2=\frac{|(-4) \times 3\cos p-15|}{\sqrt{(3\cos \theta)^2+(5\sin \theta)^2}}=\frac{3|4\cos \theta+5|}{\sqrt{9\cos^2\theta+25 \sin^2\theta}}$

Now, $~d_1d_2=\frac{9|(4\cos\theta-5)(4\cos\theta+5)|}{9\cos^2\theta+25\sin^2\theta}\\ \\ \text{or,}~ d_1d_2=\frac{9|16\cos^2\theta-25|}{9\cos^2\theta+25(1-\cos^2\theta)}=\frac{9(25-16\cos^2\theta)}{25-16\cos^2\theta}\\~~[\because~ \cos^2\theta \leq 1\Rightarrow 25>16 \geq 16\cos^2\theta] \\ \therefore~ d_1d_2=9~~\text{(constant)}$

Hence, we can conclude that the product of two perpendiculars  is independent of $~\theta.$


$7.~$ Find the equations of the straight lines through $~(0,a)~$ on which the perpendiculars dropped from the point $~(2a,2a)~$ are each of length $~a~$ unit.


Solution.


The equation of the straight line passing through the point $~(0,a)~$ and having slope $~m~$ can be written as 

$~y-a=m(x-0) \Rightarrow mx-y+a=0 \rightarrow(1)$

Now, the perpendicular distance of the point $~(2a,2a)~$ from the straight line $~(1)~$ is $~a~$ unit.

$\therefore~ \frac{|m \times 2a-2a+a|}{\sqrt{m^2+1}}=a \\ \text{or,}~~ \frac{|2ma-a|}{\sqrt{m^2+1}}=a \\ \text{or,}~~|a(2m-1)|=a\sqrt{m^2+1} \\ \text{or,}~~ a^2(2m-1)^2=a^2(m^2+1)  \\ \text{or,}~~ (2m-1)^2=m^2+1  \\ \text{or,}~~ 4m^2-4m+1=m^2+1  \\ \text{or,}~~ 3m^2-4m=0  \\ \text{or,}~~ m(3m-4)=0 \\ \therefore~ m=0, \frac 43.$

Hence , by the equation $~(1)~$ , we get the required straight line is (for $~m=0~$)

$~0-y+a=0 \Rightarrow y=a$ and 

for $~m=4/3,~$ the required straight line  is 

$~\frac 43x-y+a=0 \Rightarrow 4x-3y+3a=0.$


$8.~$ Find the equation of a straight line mid-way between the lines $~2x+3y=5~$ and $~2x+3y+1=0.$


Solution.


The equation of the given straight lines are $~2x+3y-5=0 \rightarrow(1)~$ and $~2x+3y+1=0 \rightarrow(2).$

Since the required straight line must be parallel to both straight lines $~(1)~$ and $~(2)~$ and so suppose that the straight line be $~2x+3y-k=0~(k \neq 0)\rightarrow(3).$

Since the straight line $~(3)~$ is mid-way between the straight lines $~(1)~$ and $~(2)~$, so

$\frac{|-k-1|}{\sqrt{2^2+3^2}}=\frac{|-k-(-5)|}{\sqrt{2^2+3^2}} \\ \text{or,}~~ \frac{-k-1}{\sqrt{4+9}}=\pm \frac{-k+5}{\sqrt{4+9}}\rightarrow(4) \\ \text{or,}~~ -k-1=\pm(-k+5) \\ \therefore~ -k-1=-(-k+5) \\ \text{or,}~~5-1=2k \\ \text{or,}~~ k=\frac 42=2$

By taking +ve sign , we get from $~(4),~~~-1=5~$ which is impossible.

So, the required equation of straight line is

$~2x+3y-2=0~~[\text{By (3)}].$


Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.