Ad-1

if( aicp_can_see_ads() ) {

Tangent and Normal | Part-7

Tangent and Normal | Part-7
Tangent and Normal | Part-7


 

In the previous article , we have solved few Short Answer Type Questions. In the following article, we are going to discuss/solve few more  Short Answer Type Questions of S.N.Dey Mathematics-Class 12 of the chapter Tangent and Normal (Ex-14).


14. If the tangent to the curve $~y=x^3+ax+b~$ at $~(1,-6)~$ is parallel to the line $~x-y+5=0,~$ find $~a~$ and $~b.$ 


Solution.


$y=x^3+ax+b \longrightarrow(1) \\ \therefore~\frac{dy}{dx}=3x^2+a \\ \text{So,}~~ \left[\frac{dy}{dx}\right]_{(1,-6)}=3 \cdot 1^2+a=3+a$


Slope of the given straight line $~x-y+5=0~$ is $~1.$


Clearly, by question


$3+a=1 \Rightarrow a=-2.$


Since the point $~(1,-6)~$ lies on the curve (1), so


$~-6=1^3+a \cdot 1+b \\ \text{or,}~~ -6=1+(-2)+b \Rightarrow b=-5.$


$\therefore~~ a=-2,~~ b=-5~~\text{(ans)}$


15. The slope of the tangent to the parabola $~3y^2=8x~$ at the point $~\left(\frac 23 t^2,\frac 43t\right)~$ is $~(-2);~$ find the equation of the tangent.


Solution.


$3y^2=8x \longrightarrow(1)$


Differentiating w.r.t. $~x~$ , we get


$3 \times 2y~\frac{dy}{dx}=8 \Rightarrow \frac{dy}{dx}=\frac{8}{3 \times 2y}=\frac{4}{3y}.$


By question,


$\left[\frac{dy}{dx}\right]_{\left(\frac 23 t^2,\frac 43 t\right)}=-2 \\ \text{or,}~~ \frac{4}{3 \times \frac 43 t}=-2 \\ \text{or,}~~ \frac{4}{4t}=-2 \\ \text{or,}~~ t=-\frac 12$


So, coordinates of point of contact of the tangent 


$\left(\frac 23 \cdot (-1/2)^2, \frac 43 \cdot (-1/2)\right)=\left(\frac 16, -\frac 23\right).$


Hence, the equation of tangent to the given parabola (1) at $~\left(\frac 16, -\frac 23\right)~$ is 


$y-\left(-\frac 23\right)=-2\left(x-\frac 16\right) \\ \text{or,}~~ y+\frac 23=-2x+\frac 13 \\ \text{or,}~~ 3y+2=-6x+1 \\ \therefore~~ 6x+3y+1=0~~\text{(ans)}$


MTG 35 Years NEET Previous Year Solved Question Papers with NEET Chapterwise Topicwise Solutions - Biology For NEET Exam 2023 Paperback



16. Find the equations of the tangents to the circle $~x^2+y^2 = 16~$

having slope $~\left(-\frac 43\right)$. 


Solution.


$x^2+y^2=16 \longrightarrow(1)$


Differentiating (1) w.r.t. $~x~$ , we get


$2x+2y~\frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=-\frac{2x}{2y}=-\frac xy \rightarrow(2)$


Let the slope of the tangent to the circle (1) at $~(h,k)~$ be $~-\frac 43.$


$\therefore~~ \left[\frac{dy}{dx}\right]_{(h,k)}=-\frac 43 \\ \text{or,}~~ -\frac hk=-\frac 43~~[\text{By (2)}] \Rightarrow k=\frac{3h}{4}\rightarrow(3)$


Now, since the point $~(h,k)~$ lies on the circle (1), so using (3) we get


$h^2+k^2=16 \\ \text{or,}~~ h^2+\left(\frac{3h}{4}\right)^2=16 \\ \text{or,}~~ h^2+\frac{9h^2}{16}=16 \\ \text{or,}~~ \frac{16h^2+9h^2}{16}=16\\ \text{or,}~~ \frac{25h^2}{16}=16 \\ \text{or,}~~ h=\pm \sqrt{\frac{16 \times 16}{25}}=\pm \frac{16}{5}$


$\therefore~~ k=\frac 34 \times \left( \pm \frac{16}{5}\right)=\pm \frac{12}{5}.$


So, the equation of tangent to the given circle at $~\left(\frac{16}{5},\frac{12}{5}\right)~$ is


$y-\frac{12}{5}=-\frac 43\left(x-\frac{12}{5}\right) \\ \text{or,}~~ \frac{5y-12}{5}=-\frac{4x}{3}+\frac{64}{15} \\ \text{or,}~~ \frac{5y-12}{5}=\frac{-20x+64}{15} \\ \text{or,}~~ 5y-12=\frac 13(-20x+64) \\ \text{or,}~~ 15y-36=-20x+64 \\ \text{or,}~~ 20x+15y=64+36 \\ \text{or,}~~ 5(4x+3y)=100 \\ \text{or,}~~ 4x+3y=20$


Again, the equation of the curve to the given circle (1) at $~\left(-\frac{16}{5},-\frac{12}{5}\right)~$ is


$y-\left(-\frac{12}{5}\right)=-\frac 43 \left[x-\left(-\frac{16}{5}\right)\right] \\ \text{or,}~~ y+\frac{12}{5}=-\frac{4x}{3}-\frac{64}{15} \\ \text{or,}~~ \frac{5y+12}{5}=\frac{-20x-64}{15} \\ \text{or,}~~ 5y+12=\frac{-20x-64}{3} \\ \text{or,}~~ 15y+36=-20x-64 \\ \text{or,}~~ 20x+15y=-36-64 \\ \text{or,}~~ 4(4x+3y)=-100 \\ \text{or,}~~ 4x+3y=-20$


Hence, required equations of tangents having slope $~-\frac 43~$ are 

$4x+3y=\pm 20$


## Mtg 45 + 21 Years Jee Main And Iit Jee Advanced Previous Years Solved Papers With Chapterwise Topicwise Solutions Physics, Chemistry, Mathematics (Set ... Jee Advanced Pyq Question Bank For 2023 Exam)


17. The slope of tangent to the ellipse $~x^2+4y^2 = 4~$ at the point

$~(2 \cos\theta, \sin\theta)~$ is $~\sqrt{2}~$; find the equation of the tangent. 


Solution.


$x^2+4y^2=4\longrightarrow(1) $


Differentiating (1) w.r.t. $~x~$ , we get


$2x+8y~\frac{dy}{dx}=0 \\ \text{or,}~~ \frac{dy}{dx}=-\frac{2x}{8y}=-\frac{x}{4y}$


$\therefore~~ \left[\frac{dy}{dx}\right]_{(2\cos\theta,\sin\theta)}=-\frac{2\cos\theta}{4\sin\theta}=-\frac 12 \cot\theta$


So, the equation of tangent to the given curve (1) at $~(2\cos\theta,\sin\theta)~$ is 


$y-\sin\theta=-\frac 12 \cot\theta (x-2\cos\theta) \\ \text{or,}~~ y=-\frac 12x \cot\theta+ \cos\theta \cot \theta+\sin\theta \\ \text{or,}~~ y=-\frac 12x+\cos\theta \cdot \frac{\cos\theta}{\sin\theta}+\sin\theta \\ \text{or,}~~ y=-\frac 12x \cot\theta+\frac{\cos^2\theta}{\sin\theta}+\sin\theta \\ \text{or,}~~ y=-\frac 12x\cot\theta+\frac{\cos^2\theta+\sin^2\theta}{\sin\theta} \\ \text{or,}~~ y=-\frac 12x\cot\theta+\frac{1}{\sin\theta} \\ \text{or,}~~ y=-\frac 12x\cot\theta+\csc\theta$


By question,


$-\frac 12 \cot\theta=\sqrt{2} \\ \text{or,}~~ \cot\theta=\sqrt{2} \times (-2)=-2\sqrt{2}$


$\csc\theta=\pm \sqrt{1+\cot^2\theta}=\pm\sqrt{1+8}=\pm 3$


Hence, the equations of tangents are $~y=\sqrt{2} x \pm 3.$ 



18. Find the equation of the tangent to the curve $~y = \sqrt{3x-2}~$

which is parallel to the line $~4x-2y+5=0$. [NCERT, CBSE '09]


Solution.


$y=\sqrt{3x-2} \longrightarrow(1) \\ \text{or,}~~ y^2=3x-2 \\ \therefore~~ 2y~\frac{dy}{dx}=3 \Rightarrow \frac{dy}{dx}=\frac{3}{2y}.$


Let the tangent to the given curve at $~(h,k)~$ be parallel to the line $~4x-2y+5=0 \rightarrow(2)$


From (2) we get, $~y=2x+\frac 52~$ and so the slope of the straight line (2) is $~2.$


By question, we get


$~\left[\frac{dy}{dx}\right]_{(h,k)}=2 \\ \text{or,}~~ \frac{3}{2k}=2 \Rightarrow k=\frac 34.$


Since the point $~(h,k)~$ lies on the curve (1), so


$k=\sqrt{3h-2} \\ \text{or,}~~ k^2=3h-2 \\ \text{or,}~~ 3h=\left(\frac 34\right)^2 +2 =\frac{9}{16}+2 \\ \text{or,}~~ 3h=\frac{9+32}{16} \\ \therefore~~ h=\frac{41}{48}.$


So, the equation of tangent to the given curve at $~\left(\frac{41}{48},\frac 34\right)~$ is 


$y-\frac 34=2 \left(x-\frac{41}{48}\right) \\ \text{or,}~~ 4y-3=2 \times 4\left(x-\frac{41}{48}\right)\\ \text{or,}~~ 4y-3=8x-\frac{41}{6} \\ \text{or,}~~ 24y-18=48x-41 \\ \therefore~~ 48x-24y=23~~\text{(ans)} $


19. Find the points on the curve $~y=x^3~$ where the slope of the tangent is equal to x-coordinate of the point. [CBSE '08] 


Solution.


$y=x^3 \longrightarrow(1) \\ \therefore~~ \frac{dy}{dx}=3x^2$


Let the coordinates of the required point $~(h,k).$


$\therefore~~$ By question, $~\left[\frac{dy}{dx}\right]_{(h,k)}=h$


$ \text{So,}~~ 3h^2=h \\ \text{or,}~~ h(3h-1)=0 \\ \text{or,}~~ h=0, 3h-1=0 \\ \therefore~~ h=0,\frac 13.$


Since the point $~(h,k)~$ lies on the curve (1), $~k=h^3.$


For $~h=0,~~k=0.$


For $~h=\frac 13,~~ k=\left(\frac 13\right)^3=\frac{1}{27}.$


Hence, the coordinates of the required points are $~(0,0)~$ and $~\left(\frac{1}{3},\frac{1}{27}\right).$


20. Using calculus find the coordinates of the point on the parabola $~y^2 = 12x~$ at which the tangent is parallel to the line $~2x+3y=5.$


Solution.


$y^2=12x \longrightarrow(1) \\ \therefore~~ 2y~\frac{dy}{dx}=12 \\ \text{or,}~~ \frac{dy}{dx}=\frac{12}{2y}=\frac 6y.$


Let the tangent to the given curve (1) at $~(h,k)~$ be parallel to the line $~2x+3y=5 \rightarrow (2)$


From (2) we get, $~y=-\frac 23x+\frac 53.$


Now, the slope of the straight line (2) is $~ -\frac 23.$


By question, $~ \left[\frac{dy}{dx}\right]_{(h,k)}=-\frac 23$


$\text{So,}~~ \frac 6k=-\frac 23 \Rightarrow k=-\frac{6 \times 3}{2}=-9.$


Since the point $~(h,k)~$ lies on the curve (1), $~k^2=12h \Rightarrow h=\frac{k^2}{12}.$


For $~ k=-9,~~ h=\frac{(-9)^2}{12}=\frac{81}{12}=\frac{27}{4}.$


Hence, the coordinates of the required point is $~\left(\frac{27}{4},-9\right).$



MTG 45 Years JEE Advanced Previous Years Solved Papers with Chapterwise Solutions-Physics (1978-2022), JEE Advanced PYQ for 2023 Exam Paperback


MTG 45 Years JEE Advanced Previous Years Solved Papers






21. Find the equation of the tangent to the ellipse $~4x^2 +9y^2 = 36~$ at the point $~(x_1,y_1)~$; hence, find the coordinates of the points on this ellipse at which the tangents are parallel to the line $~2x-3y=6$.


Solution.


$4x^2+9y^2=36 \longrightarrow(1)$


Differentiating (1) w.r.t. $~x~$, we get


$8x+18y~\frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=-\frac{8x}{18y}=-\frac{4x}{9y}.$


The equation of the tangent to the given curve at $~(x_1,y_1)~$ is given by 


$y-y_1=\left[\frac{dy}{dx}\right]_{(x_1,y_1)}(x-x_1) \\ \text{or,}~~ y-y_1=-\frac{4x_1}{9y_1}(x-x_1) \\ \text{or,}~~ 9yy_1-9y_1^2=-4xx_1+4x_1^2 \\ \text{or,}~~ 4xx_1+9yy_1=4x_1^2+9y_1^2 \\ \therefore~~ 4xx_1+9yy_1=36~~[*]$


Note[*] : Since the point $~(x_1,y_1)~$ lies on (1),  $~4x_1^2+9y_1^2=26.$



2nd Part :


Let us assume that the tangent to the given curve at $~(h,k)~$ is parallel to the straight line $~2x-3y=6 \rightarrow(2)$


From (2) we get, $~y=\frac 23x-2.$


So, the slope of the straight line (2) is $~\frac 23.$


By question, $~\left[\frac{dy}{dx}\right]_{(h,k)}=\frac 23$


$\text{So,}~~ -\frac{4h}{9k}=\frac 23 \Rightarrow h=-\frac 32k.$


Since the point $~(h,k)~$ lies on the ellipse (1), so


$4h^2+9k^2=36 \\ \text{or,}~~ 4 \times \left(-\frac 32k\right)^2+9k^2=36 \\ \text{or,}~~ 4 \times \frac 94k^2+9k^2=36 \\ \text{or,}~~ 18k^2=36 \\ \therefore~~k=\pm \sqrt{\frac{36}{18}}=\pm \sqrt{2}.$


For $~k=\sqrt{2},~~ h=-\frac 32 \cdot \sqrt{2}=-\frac{3\sqrt{2}}{2}$


For $~k=-\sqrt{2},~~ h=-\frac 32 \cdot (-\sqrt{2})=\frac{3\sqrt{2}}{2}$


Hence, the coordinates of the required points are $~\left(-\frac{3\sqrt{2}}{2},\sqrt{2}\right)$ and $~\left(\frac{3\sqrt{2}}{2},-\sqrt{2}\right)$.



22. Find the equation of the tangent to the parabola $y^2 = 8x,~$ which is inclined at an angle $~45^{\circ}~$ with the x-axis.


Solution.


$y^2=8x \longrightarrow(1)$


Differentiating (1) w.r.t. $~x~$ , we get


$2y~\frac{dy}{dx}=8 \Rightarrow \frac{dy}{dx}=\frac{8}{2y}=\frac 4y.$


Let us assume that the tangent to the given curve at $~(h,k)~$ is inclined at an angle $~45^{\circ}~$ with the $x-$axis.


$\therefore~~ \left[\frac{dy}{dx}\right]_{(h,k)}=\tan 45^{\circ} \\ \text{or,}~~ \frac 4k=1 \Rightarrow k=4.$


Since the point $~(h,k)~$ lies on the given parabola at $~(2,4)~$ is 


$y-4=1 \cdot (x-2) \Rightarrow y=x+2.$


23. Find the equation of the tangent to the ellipse $~x^2 + 16y^2 = 16~$ at the point $~(4 \cos\alpha, \sin\alpha)~$. Hence, find the equations of the tangents to the ellipse which are inclined at an angle $~60^{\circ}$ to x-axis.


Solution.


$x^2+16y^2=16 \longrightarrow(1)$


Differentiating (1) w.r.t. $~x~$ , we get


$2x+32y~\frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=-\frac{2x}{32y}=-\frac{x}{16y}$


$\left[\frac{dy}{dx}\right]_{(4\cos\alpha,\sin\alpha)}=-\frac{4\cos\alpha}{16\sin\alpha}=-\frac{\cos\alpha}{4\sin\alpha}$


So, the equation of tangent at $~(4\cos\alpha,\sin\alpha)~$ is 


$y-\sin\alpha=-\frac{\cos\alpha}{4\sin\alpha}(x-4\cos\alpha) \\ \text{or,}~~ 4y\sin\alpha-4\sin^2\alpha=-x\cos\alpha+4\cos^2\alpha \\ \text{or,}~~ x\cos\alpha+4y\sin\alpha=4(\sin^2\alpha+\cos^2\alpha)=4\rightarrow (2)$


If the tangent is inclined at an angle $~60^{\circ}~$ with the x-axis, then 


$-\frac{\cos\alpha}{4\sin\alpha}=\tan 60^{\circ}=\sqrt{3} \\ \text{or,}~~ \cot\alpha=-4\sqrt{3} \\ \therefore~~ \csc\alpha=\mp\sqrt{1+\cot^2\alpha}=\mp \sqrt{1+(-4\sqrt{3})^2} \\ \text{or,}~~ \csc\alpha=\mp \sqrt{1+48}=\mp 7.$


From (2) we get,


$x\cot\alpha+4y=4\csc\alpha \\ \text{or,}~~ x(-4\sqrt{3})+4y=4 \times (\mp 7) \\ \text{or,}~~ -4(\sqrt{3} x-y)= \mp 4 \times 7 \\ \therefore~~ \sqrt{3} x-y= \pm 7~~\text{(ans)}$


24. Find the equations of the tangents to the hyperbola $~3x^{2}-4y^2= 12,~$ which are inclined at an angle $~60^{\circ}$ to x-axis.


Solution.


$3x^2-4y^2=12 \rightarrow(1)$


Differentiating (1) w.r.t. $x$, we get


$6x-8y~\frac{dy}{dx}=0\\~~ \Rightarrow \frac{dy}{dx}=\frac{6x}{8y}=\frac{3x}{4y}$


Let us consider the tangent to (1) at $~(h,k)~$ makes an angle $~60^{\circ}~$ with $x-$ axis.


$\therefore~~\left[\frac{dy}{dx}\right]_{(h,k)}=\tan 60^{\circ}\\~~\Rightarrow \frac{3h}{4k}= \sqrt{3}$



$\therefore~3h=4k\sqrt{3} \Rightarrow h=\frac{4k\sqrt{3}}{3}=\frac{4k}{\sqrt{3}} \rightarrow(2)$


Since the point $~(h,k)~$ lies on the given curve (1), so


$3h^2-4k^2=12 \\ \text{or,}~~ 3 \times \left(\frac{4k}{\sqrt{3}}\right)^2-4k^2=12 \\ \text{or,}~~ 16k^2-4k^2=12 \\ \text{or,}~~ 12k^2=12 \\ \text{or,}~~ k^2=1\Rightarrow k=\pm 1.$


$\therefore~~h= \frac{4}{\sqrt{3}} \times (\pm 1)=\pm \frac{4}{\sqrt{3}}~~[\text{By (2)}]$


Hence, the equation of the tangent at the point $~\left( \pm \frac{4}{\sqrt{3}}, \pm 1\right)~$ is given by 


$y- (\pm 1)=\sqrt{3} \left[x-\left( \pm \frac{4}{\sqrt{3}}\right)\right] \\ \text{or,}~~ y \mp 1=\sqrt{3}x \mp 4 \\ \text{or,}~~ y-\sqrt{3}x=\mp 4-(\mp 1) \\ \therefore~~y=\sqrt{3}x \pm 3.$


25. Prove that the lengths of the tangents from any point on the line $~3x-8y+2=0~$ to the circles $~x^2+y^2+2x-10y+12=0~$ and $~x^2+y^2-4x+6y+8 = 0~$ are equal.


Solution.


Let $(\alpha,\beta)$ be any point on the straight line $~3x-8y+2=0.$


$\therefore~~ 3\alpha-8\beta+2=0 \Rightarrow \beta=\frac{3\alpha+2}{8} \rightarrow(1)$


The given circles are 


$x^2+y^2+2x-10y+12=0 \rightarrow(2),$


$x^2+y^2-4x+6y+8=0 \rightarrow(3).$


Now, the length of the tangent from the point $~(\alpha,\beta)~$ to the circle (2) is given by 


$~\sqrt{\alpha^2+\beta^2+2\alpha-10\beta+12}=T \\ \text{or,}~~ T^2 \\=\alpha^2+\left(\frac{3\alpha+2}{8}\right)^2+2\alpha-10 \times \frac{3\alpha+2}{8}+12 \\=\alpha^2+\frac{1}{64}(9\alpha^2+12\alpha+4)\\~~+2\alpha-\frac 54(3\alpha+2)+12 \\=\frac{1}{64}(64\alpha^2+9\alpha^2+12\alpha+4\\~~+128\alpha-240\alpha-160+768)\\=\frac{1}{64}(73\alpha^2-100\alpha+612) \rightarrow(4)$


Again, the length of the tangent from the point $~(\alpha,\beta)~$ to the circle (3) is given by 


$S^2=\alpha^2+\beta^2-4\alpha +6\beta+8\\=\alpha^2+\left(\frac{3\alpha+2}{8}\right)^2-4\alpha+6 \times \frac{3\alpha+2}{8}+8 \\= \alpha^2+\frac{1}{64}(9\alpha^2+12\alpha+4)-4\alpha\\~~+\frac 18(18\alpha+12)+8\\=\frac{1}{64}(64\alpha^2+9\alpha^2+12\alpha+4\\~~-256\alpha+144\alpha+96+512)\\=\frac{1}{64}(73\alpha^2-100\alpha+612)\rightarrow(5)$


From (4) and (5), we can conclude that 


$T^2=S^2 \Rightarrow T=S~( \because ~ T,S >0)$


Hence, the length of the tangents are equal.


26. If the length of the tangent drawn from $~(f, g)~$ to the circle $~x^2+ y^2 = 6~$ be twice the length of the tangent drawn from the same point to the circle $~x^2 + y^2+3(x+y)= 0~$ then show that $~g^2+f^2+4g+4f+2=0$.



Solution.


The length of the tangent from the point $~(f,g)~$ to the circle $~x^2+y^2-6=0~$ is $~\sqrt{f^2+g^2-6}~$ unit.


Again, the length of the tangent from the point $~(f,g)~$ to the circle $~x^2+y^2+3(x+y)=0~$ is given by $~\sqrt{f^2+g^2+3f+3g}~$ unit.


So, by question,


$~\sqrt{f^2+g^2-6}=2\sqrt{f^2+g^2+3f+3g} \\ \text{or,}~~ f^2+g^2-6=4(f^2+g^2+3f+3g) \\ \text{or,}~~ f^2-4f^2+g^2-4g^2-12f-12g-6=0 \\ \text{or,}~~ -3f^2-3g^2-12f-12g-6=0 \\ \text{or,}~~ -3(f^2+g^2+4f+4g+2)=0 \\ \therefore~~ f^2+g^2+4f+4g+2=0.$



Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.